Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul 29;929(3):278-87.
doi: 10.1016/0167-4889(87)90254-0.

The relationship of phosphorylation of membrane proteins with the osmotic fragility and filterability of Plasmodium berghei-infected mouse erythrocytes

The relationship of phosphorylation of membrane proteins with the osmotic fragility and filterability of Plasmodium berghei-infected mouse erythrocytes

Y Yuthavong et al. Biochim Biophys Acta. .

Abstract

Membrane from Plasmodium berghei-infected mouse erythrocytes showed a pattern of protein phosphorylation which was substantially altered from the normal pattern, with an increase in the phosphorylation of the protein with an apparent molecular weight of 43,000 (M 43), which increased from undetectable in uninfected cells to a maximum in the mature trophozoite stage. Phosphorylation levels of this and other minor bands were strongly correlated with osmotic fragility and filterability. The level of M 43 phosphorylation in membranes from cells which remained intact in a hypotonic medium was 3.82 +/- 0.59-times that of lysed cells, compared with the value of 0.76 +/- 0.07 calculated from distribution alone. Results found when intact erythrocytes were phosphorylated by incubation with [32P]Pi prior to partial lysis were similar to those found when membranes from the lysed and unlysed fractions were subsequently phosphorylated with [gamma-32P]ATP. Infected erythrocytes which could pass repeatedly through 3-micron polycarbonate filters had a much higher phosphorylation level for the M 43 region than whole infected cells with similar parasitemia and stage distribution. The phosphorylation change could play a role in the control of osmotic and mechanical properties of the infected erythrocytes during maturation.

PubMed Disclaimer

Publication types

LinkOut - more resources