Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 30;9(10):3171.
doi: 10.3390/jcm9103171.

Trabeculated Myocardium in Hypertrophic Cardiomyopathy: Clinical Consequences

Affiliations

Trabeculated Myocardium in Hypertrophic Cardiomyopathy: Clinical Consequences

José David Casanova et al. J Clin Med. .

Abstract

Aims: Hypertrophic cardiomyopathy (HCM) is often accompanied by increased trabeculated myocardium (TM)-which clinical relevance is unknown. We aim to measure the left ventricular (LV) mass and proportion of trabeculation in an HCM population and to analyze its clinical implication.

Methods and results: We evaluated 211 patients with HCM (mean age 47.8 ± 16.3 years, 73.0% males) with cardiac magnetic resonance (CMR) studies. LV trabecular and compacted mass were measured using dedicated software for automatic delineation of borders. Mean compacted myocardium (CM) was 160.0 ± 62.0 g and trabecular myocardium (TM) 55.5 ± 18.7 g. The percentage of trabeculated myocardium (TM%) was 26.7% ± 6.4%. Females had significantly increased TM% compared to males (29.7 ± 7.2 vs. 25.6 ± 5.8, p < 0.0001). Patients with LVEF < 50% had significantly higher values of TM% (30.2% ± 6.0% vs. 26.6% ± 6.4%, p = 0.02). Multivariable analysis showed that female gender and neutral pattern of hypertrophy were directly associated with TM%, while dynamic obstruction, maximal wall thickness and LVEF% were inversely associated with TM%. There was no association between TM% with arterial hypertension, physical activity, or symptoms. Atrial fibrillation and severity of hypertrophy were the only variables associated with cardiovascular death. Multivariable analysis failed to demonstrate any correlation between TM% and arrhythmias.

Conclusions: Approximately 25% of myocardium appears non-compacted and can automatically be measured in HCM series. Proportion of non-compacted myocardium is increased in female, non-obstructives, and in those with lower contractility. The amount of trabeculation might help to identify HCM patients prone to systolic heart failure.

Keywords: advanced cardiac imaging; cardiac magnetic resonance; hypertrophic cardiomyopathy; left ventricular non-compaction; myocardial disease; trabeculas.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Survival for higher trabeculated myocardium (TM%) quartile (Kaplan Meier curves). (A) Sudden Death (SD) equivalent; (B) CV death.
Figure 2
Figure 2
Example of automatic quantification of the compacted and trabeculated myocardium. Left: still diastolic coronal CMR image. Right: automatic border delineation of compacted and trabeculated myocardium from the same slice. White: epicardial border, blue: endocardial border, red: trabeculation border.
Figure 3
Figure 3
Correlation between TM%, (A) CM, (B) MWT (from echocardiography), (C) ED volume, and (D) EF%.

References

    1. Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P., Hagege A.A., Lafont A., Limongelli G., Mahrholdt H., et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC) Eur. Heart J. 2014;35:2733–2779. doi: 10.1093/eurheartj/ehu284. - DOI - PubMed
    1. Maron B.J. Hypertrophic cardiomyopathy: A systematic review. JAMA. 2002;287:1308–1320. doi: 10.1001/jama.287.10.1308. - DOI - PubMed
    1. Spirito P., Seidman C.E., McKenna W.J., Maron B.J. The management of hypertrophic cardiomyopathy. N. Engl. J. Med. 1997;336:775–785. doi: 10.1056/NEJM199703133361107. - DOI - PubMed
    1. Elliott P., McKenna W.J. Hypertrophic cardiomyopathy. Lancet. 2004;363:1881–1891. doi: 10.1016/S0140-6736(04)16358-7. - DOI - PubMed
    1. Charron P., Carrier L., Dubourg O., Tesson F., Desnos M., Richard P., Bonne G., Guicheney P., Hainque B., Bouhour J.B., et al. Penetrance of familial hypertrophic cardiomyopathy. Genet. Couns. 1997;8:107–114. - PubMed