Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar;62(3):304-312.
doi: 10.2967/jnumed.120.243170. Epub 2020 Oct 2.

The Role of Nuclear Medicine in the Clinical Management of Benign Thyroid Disorders, Part 1: Hyperthyroidism

Affiliations
Free article
Review

The Role of Nuclear Medicine in the Clinical Management of Benign Thyroid Disorders, Part 1: Hyperthyroidism

Giuliano Mariani et al. J Nucl Med. 2021 Mar.
Free article

Abstract

Benign thyroid disorders, especially hyper- and hypothyroidism, are the most prevalent endocrine disorders. The most common etiologies of hyperthyroidism are autoimmune hyperthyroidism (Graves disease, GD), toxic multinodular goiter (TMNG), and toxic thyroid adenoma (TA). Less common etiologies include destructive thyroiditis (e.g., amiodarone-induced thyroid dysfunction) and factitious hyperthyroidism. GD is caused by autoantibodies against the thyroid-stimulating hormone (TSH) receptor. TMNG and TA are caused by a somatic activating gain-of-function mutation. Typical laboratory findings in patients with hyperthyroidism are low TSH, elevated free-thyroxine and free-triiodothyronine levels, and TSH-receptor autoantibodies in patients with GD. Ultrasound imaging is used to determine the size and vascularity of the thyroid gland and the location, size, number, and characteristics of thyroid nodules. Combined with lab tests, these features constitute the first-line diagnostic approach to distinguishing different forms of hyperthyroidism. Thyroid scintigraphy with either radioiodine or 99mTc-pertechnetate is useful to characterize different forms of hyperthyroidism and provides information for planning radioiodine therapy. There are specific scintigraphic patterns for GD, TMNG, TA, and destructive thyroiditis. Scintigraphy with 99mTc-sestamibi allows differentiation of type 1 from type 2 amiodarone-induced hyperthyroidism. The radioiodine uptake test provides information for planning radioiodine therapy of hyperthyroidism. Hyperthyroidism can be treated with oral antithyroid drugs, surgical thyroidectomy, or 131I-iodide. Radioiodine therapy is generally considered after failure of treatment with antithyroid drugs, or when surgery is contraindicated or refused by the patient. In patients with TA or TMNG, the goal of radioiodine therapy is to achieve euthyroid status. In GD, the goal of radioiodine therapy is to induce hypothyroidism, a status that is readily treatable with oral thyroid hormone replacement therapy. Dosimetric estimates based on the thyroid volume to be treated and on radioiodine uptake should guide selection of the 131I-activity to be administered. Early side effects of radioiodine therapy (typically mild pain in the thyroid) can be handled by nonsteroidal antiinflammatory drugs. Delayed side effects after radioiodine therapy for hyperthyroidism are hypothyroidism and a minimal risk of radiation-induced malignancies.

Keywords: amiodarone-induced thyroid dysfunction; autoimmunity; destructive thyroiditis; hyperthyroidism; toxic multinodular goiter; toxic thyroid adenoma.

PubMed Disclaimer

MeSH terms

LinkOut - more resources