Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1987 Apr;65(4):627-31.
doi: 10.1139/y87-105.

The role of calcium at the sarcolemma in the control of myocardial contractility

Review

The role of calcium at the sarcolemma in the control of myocardial contractility

G A Langer. Can J Physiol Pharmacol. 1987 Apr.

Abstract

The importance of sarcolemmal-bound calcium (Ca) in the control of contraction in mammalian myocardium is indicated by the following results. The curve that relates [Ca]o (from 50 microM to 10 mM) to force development and that which relates [Ca]o to Ca bound to a highly purified sarcolemmal fraction are superimposable. The ability of a series of cations to uncouple excitation from contraction is the same as their relative ability to displace Ca from the sarcolemma. Dimethonium, which specifically displaces cation from the diffuse double layer of the cellular surface, has little effect on contractile force. This indicates that the Ca actually bound to the sarcolemma is the surface Ca important in contractile control. Polymyxin B, a highly charged cationic amphiphilic peptidolipid, specifically competes for Ca-binding sites on anionic and zwitterionic phospholipid. It is a potent displacer of Ca from myocardial cells and purified sarcolemma and a potent uncoupler. Phospholipase D cleaves the nitrogenous base from sarcolemmal phospholipid with production of anionic phosphatidic acid. Phospholipase D treatment increases Ca bound to cells and purified sarcolemma and increases force development of ventricular tissue from both neonatal rat and adult rabbit. Insertion of charged amphiphiles in the sarcolemma as phospholipid analogues modulate interaction of Ca with the sarcolemma, e.g., anionic dodecylsulfate increases Ca bound to sarcolemmal vesicles by more than 80% and increases force development in rabbit papillary muscle by 100%. The effect of pH variation on Ca binding to phospholipid extracted from sarcolemma indicates that phospholipid accounts for at least 75% of the binding. The current model proposes a two-site control of Ca binding.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources