Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar;85(3):1625-1642.
doi: 10.1002/mrm.28535. Epub 2020 Oct 3.

Contribution of perfusion to the 11 C-acetate signal in brown adipose tissue assessed by DCE-MRI and 68 Ga-DOTA PET in a rat model

Affiliations

Contribution of perfusion to the 11 C-acetate signal in brown adipose tissue assessed by DCE-MRI and 68 Ga-DOTA PET in a rat model

Gabriel Richard et al. Magn Reson Med. 2021 Mar.

Abstract

Purpose: Determine if dynamic contrast enhanced (DCE) -MRI and/or 68 gallium 1,4,7,10-tetraazacyclododecane N, N', N″, N‴-tretraacetic acid (68 Ga-DOTA) positron emission tomography (PET) can assess perfusion in rat brown adipose tissue (BAT). Evaluate changes in perfusion between cold-stimulated and heat-inhibited BAT. Determine if the 11 C-acetate pharmacokinetic model can be constrained with perfusion information to improve assessment of BAT oxidative metabolism.

Methods: Rats were split into three groups. In group 1 (N = 6), DCE-MRI with gadobutrol was compared directly to 68 Ga-DOTA PET following exposure to 10 °C for 48 h. 11 C-Acetate PET was also performed to assess oxidation. In group 2 (N = 4), only 68 Ga-DOTA PET was acquired following exposure to 10 °C for 48 h. Finally, in group 3 (N = 10), perfusion was assessed with DCE-MRI in rats exposed to 10 °C or 30 °C for 48 h, and oxidation was measured with 11 C-acetate. Perfusion was quantified with a two-compartment pharmacokinetic model, while oxidation was assessed by a four-compartment model.

Results: DCE-MRI and 68 Ga-DOTA PET provided similar perfusion measures, but a decrease in the perfusion signal was noted with longer imaging sessions. Exposure to 10 °C or 30 °C did not affect the perfusion measures, but the 11 C-acetate signal increased in BAT at 10 °C. Without prior information about blood volume, the 11 C-acetate compartment model overestimated blood volume and underestimated oxidation in 10 °C BAT.

Conclusion: Precise assessment of oxidation via 11 C-acetate PET requires prior information about blood volume which can be obtained by DCE-MRI or 68 Ga-DOTA PET. Since perfusion can change rapidly, simultaneous PET-MRI would be preferred.

Keywords: 11C-acetate; 68Ga-DOTA; DCE-MRI; brown adipose tissue; oxidation; perfusion.

PubMed Disclaimer

References

REFERENCES

    1. Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev. 1984;64:1-64.
    1. Yoneshiro T, Aita S, Matsushita M, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123:3404-3408.
    1. Chondronikola M, Volpi E, Borsheim E, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63:4089-4099.
    1. Sun KT, Yeatman LA, Buxton DB, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med. 1998;39:272-280.
    1. Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nucl Med. 2013;54:523-531.

Publication types

Grants and funding

LinkOut - more resources