Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 24;27(12):3974-3978.
doi: 10.1002/chem.202003905. Epub 2021 Jan 14.

Synthesis of Unprecedented 4d/4f-Polypnictogens

Affiliations

Synthesis of Unprecedented 4d/4f-Polypnictogens

Niklas Reinfandt et al. Chemistry. .

Abstract

A series of 4d/4f-polyarsenides, -polyarsines and -polystibines was obtained by reduction of the Mo-pnictide precursor complexes [{Cpt Mo(CO)2 }2 (μ,η2:2 -E2 )] (E=As, Sb; Cpt =tBu substituted cyclopentadienyl) with two different divalent samarocenes [Cp*2 Sm] and [(CpMe4nPr )2 Sm]. For the reductive conversion of the Mo-stibide only one product was isolated, featuring a planar tetrastibacyclobutadiene moiety as an unprecedented ligand for organometallic compounds. For the corresponding Mo-arsenide a tetraarsacyclobutadiene and a second species with a side-on coordinated As2 2- anion was isolated. The latter can be considered as reaction intermediate for the formation of the tetraarsacyclobutadiene.

Keywords: lanthanides; molybdenum; polyarsenides; polystibides; reduction.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Earlier work: Observed mixture of products in the reduction of [{CpMo(CO)2}2(μ,η 2:2‐P2)]. [5a]
Scheme 2
Scheme 2
Reduction of [{CptMo(CO)2}2(μ,η 2:2‐As2)] with [Cp*2Sm(thf)2] and [(CpMe4nPr)2Sm], resulting in [(Cp*2Sm)2As2(CptMo(CO)2)2] (1) [((CpMe4nPr)2Sm)2As2(CptMo(CO)2)2] (2), and [((CpMe4nPr)2Sm)2As4(CptMo(CO)2)2] (3).
Figure 1
Figure 1
Molecular structure of 1 in the solid state. [22] Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Sm1−O1 2.378(4), Sm1−O2′ 2.391(4), Mo1−As1 2.6847(9), Mo1−As1′ 2.6997(9), Mo1−C1 1.892(6), As1−As1′ 2.238(2), C1−O1 1.212(3), O1‐Sm‐O2′ 77.6(2), Mo1‐As1‐Mo1′ 103.92(3).
Figure 2
Figure 2
Molecular structure of 3 in the solid state. [22] Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Sm1−As1 3.0300(8), Sm1−O1 2.380(2), Mo1−As2 2.6498(7), Mo1−As1′ 2.6261(7), Mo1−C1 1.873(3), As1−As2 2.4862(7), As1′−As2 2.3503(6), C1−O1 1.206(4), O1‐Sm‐As1 76.99(6), As1′‐Mo1‐As2 52.91(2), Mo1‐As1′‐Sm1′ 142.35(2), As1′‐As2‐Mo1 63.03(2), As1‐As2‐Mo1 105.01(3), As2‐As1‐As2′ 91.16(2), As1‐As2‐As1′ 88.84(2).
Scheme 3
Scheme 3
Synthesis of [(Cp*2Sm)2Sb4(CptMo(CO)2)2] (4) and [((CpMe4nPr)2Sm)2Sb4(CptMo(CO)2)2] (5) with R=Me (4), n‐propyl (5).
Figure 3
Figure 3
Molecular structure of 4 in the solid state. [22] Hydrogen atoms are omitted for clarity. Selected bond lengths [Å], angles [°]: Sm1−Sb2′ 3.2375(7), Sm1−O1 2.381(6), Mo1−Sb2 2.8146(9), Mo1−Sb1 2.8549(9), Mo1−C1 1.894(8), Sb1−Sb2 2.7313(8), Sb1−Sb2′ 2.8608(7), C1−O1 1.209(10), O1‐Sm‐Sb2′ 76.73(14), Sb1‐Mo1‐Sb2 57.59(2), Mo1‐Sb2‐Sm1′ 153.18(2), Sb1‐Sb2‐Mo1 61.94(2), Sb2′‐Sb1‐Mo1 102.32(2), Sb2‐Sb1‐Sb2′ 87.73(2), Sb1‐Sb2‐Sb1′ 92.28(2).
Figure 4
Figure 4
Molecular structure of 5 in the solid state. [22] Hydrogen atoms and solvent molecules (toluene) are omitted for clarity. Selected bond lengths [Å] and angles [°]: Sm1−Sb1 3.2794(8), Sm1−O1 2.386(7), Mo1−Sb2 2.8464(11), Mo1−Sb1′ 2.8315(11), Mo1−C1 1.888(10), Sb1−Sb2 2.8618(10), Sb1′−Sb2 2.7254(10), C1−O1 1.221(12), O1‐Sm‐Sb1 76.8(2), Sb1′‐Mo1‐Sb2 57.37(3), Mo1‐Sb1′‐Sm1′ 152.00(3), Sb1′‐Sb2‐Mo1 61.59(3), Sb1‐Sb2‐Mo1 103.46(3), Sb2‐Sb1‐Sb2′ 90.16(3), Sb1‐Sb2‐Sb1′ 89.84(3).
Figure 5
Figure 5
Energetic relationship of the compounds under discussion. The species „[{CpMo(CO)2}2(μ,η 2:2‐E2)]+[(Cp2*Sm)2P2(CpMo(CO)2)2]+E2“ were taken as reference systems. They were arbitrarily set to identical energies.

References

    1. Faessler T. F., Structure and Bonding, Vol. 140 (Ed.: Mingos M. P.), Springer Verlag, Berlin, 2011.
    1. Zide J. M. O., Kleiman-Shwarsctein A., Strandwitz N. C., Zimmerman J. D., Steenblock-Smith T., Gossard A. C., Forman A., Ivanovskaya A., Stucky G. D., Appl. Phys. Lett. 2006, 88, 162103.
    1. None
    1. Detzel M., Mohr T., Scherer O. J., Wolmershäuser G., Angew. Chem. Int. Ed. Engl. 1994, 33, 1110–1112;
    2. Angew. Chem. 1994, 106, 1142–1144;
    1. Scherer O. J., Winter R., Wolmershäuser G., Z. Anorg. Allg. Chem. 1993, 619, 827–835.

LinkOut - more resources