Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 8:11:569661.
doi: 10.3389/fphar.2020.569661. eCollection 2020.

Type I PRMT Inhibition Protects Against C9ORF72 Arginine-Rich Dipeptide Repeat Toxicity

Affiliations

Type I PRMT Inhibition Protects Against C9ORF72 Arginine-Rich Dipeptide Repeat Toxicity

Alan S Premasiri et al. Front Pharmacol. .

Abstract

Repeat expansion mutations in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat-associated non-AUG translation of this expansion produces dipeptide repeat proteins (DRPs). The arginine containing DRPs, polyGR and polyPR, are consistently reported to be the most toxic. Here we demonstrated that small molecule inhibition of type I protein arginine methyltransferases (PRMT) protects against polyGR and polyPR toxicity. Furthermore, our findings suggest that asymmetric dimethylation of polyGR and polyPR by Type I PRMTs plays important roles in their cytotoxicity.

Keywords: ALS (Amyotrophic lateral sclerosis); C9ORF72 DPRs; FTD (Fronto-Temporal Dementia); arginine methylation; glycine-arginine; proline-arginine; protein arginine methyl transferase.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Type I PRMT inhibitors abrogate toxicity associated with GR15 and PR15 challenge in NSC-34 cells. (A) Relative signal of total ADMe in NSC-34 cells after having been incubated with Type I PRMT inhibitors for 24 hours. Quantification of the signal was done by ICW assay using an antibody against total ADMe and normalized using an antibody against total protein (MS023: df = 132, R2 = 0.7441; MS049: df = 82, R2 = 0.8218; EPZ020411: df = 83, R2 = 0.7087; GSK3368715: df = 50, R2 = 50). (B) Schematic of an ICW assay workflow and example visualization. We used a primary antibody against total ADMe, and a fluorescent green IRDye secondary antibody. A red, CellTag700 antibody was used to fluorescently label total protein. (C, D) Percent metabolic activity after challenging with 3 µM of GR15 or PR15 and dosing with a Type I PRMT inhibitor (GR15 challenge: MS023: df = 67, R2 = 0.8054; MS049: df = 10, R2 = 0.9630; EPZ020411: df = 13, R2 = 0.9237; GSK3368715: df = 19, R2 = 0.8077; PR15 challenge: MS023: df = 40, R2 = 0.9034; MS049: df = 10, R2 = 0.9571; EPZ020411: df = 13, R2 = 0.9625; GSK3368715: df = 7, R2 = 0.9330). (E, F) Percent LDH release after challenging with 3 µM of GR15 or PR15 and dosing with a Type I PRMT inhibitor (GR15 challenge: MS023: df = 22, R2 = 0.9056; MS049: df = 10, R2 = 0.9414; EPZ020411: df = 13, R2 = 0.8807; GSK3368715: df = 10, R2 = 0.9313; PR15 challenge: MS023: df = 22, R2 = 0.9398; MS049: df = 10, R2 = 0.9613; EPZ020411: df = 10, R2 = 0.7078; GSK3368715: df = 10, R2 = 0.9375). (G) Percent metabolic activity after challenging NSC-34 cells with 3 µM of GR15 or PR15 and dosing with GSK591 (two-way ANOVA with Dunnett’s multiple comparison; n = 6 untreated, n = 3 treated; P values > 0.1657, mean ± s.e.m). The 200 µM dose of GSK591 significantly decreased metabolic activity beyond the effect observed with 3 µM of GR15 alone (two-way ANOVA with Sidak’s multiple comparison; n = 6 untreated, n = 3 treated; *P = 0.0261, mean ± s.e.m.) (H) Percent metabolic activity after challenging cells with 3 µM of GR15 or PR15 and dosing with MS094 (two-way ANOVA with Dunnett’s multiple comparison; NS P values >0.5496, mean ± s.e.m.). (I) Percent LDH release after challenging cells with 3 µM of GR15 or PR15 and dosing with MS094 (two-way ANOVA with Dunnett’s multiple comparison; NS P values >0.1650, mean ± s.e.m.). For (C, D, G, H), 100% activity represents untreated NSC-34 cells, and 0% activity represents metabolic activity after 3 µM of GR15 or PR15 challenge alone. For (C–F), full dose response plots can be found in Supplementary Figure 1 . For (A), (C–F), a full listing of n for each condition can be found in the Supplementary Statistics section of the Supplementary Material .
Figure 2
Figure 2
Asymmetrical arginine dimethylation of GR15 prevents abrogation of toxicity by MS023. (A) Products of in-vitro methylation assay immunoblotted for asymmetrically dimethylated arginine 3 in Histone 4 and GR dipeptide (left) and total asymmetrical arginine dimethylation and GR dipeptide (right). Also shown is the peptide sequence of Histone 4 with the epitope of the H4R3me2a antibody highlighted. Both blots show ADMe of GR15 and that it is increasingly dimethylated with increasing amounts of PRMT1. (B) Percent metabolic activity after challenging with ADMe-GR15 compared to unmethylated GR15 (****P < 0.0001, ***P = 0.0002, **P = 0.0013, *P = 0.0281) or ADMe-PR15 compared to unmethylated PR15 (####P < 0.0001, ##P = 0.004; two-way ANOVA with Sidak’s multiple comparison; n = 3 for each dose of DRP; mean ± s.e.m.). (C) Percent LDH release after challenging with ADMe-GR15 compared to unmethylated GR15 (**P = 0.0083, *P = 0.0117) or ADMe-PR15 compared to PR15 (#P = 0.0239; two-way ANOVA with Sidak’s multiple comparison; n = 3 for each dose of DRP; NS P > 0.05 mean ± s.e.m.). (D) Percent metabolic activity after challenge with 3 µM of ADMe-GR15 or unmethylated GR15 and dosing with MS023, compared to activity after challenge of 3 µM of GR15 alone (two-way ANOVA with Dunnett’s multiple comparison; n = 9 for each dosing group; NS P > 1.638, ****P < 0.0001, *P = 0.0411; mean ± s.e.m.). (E) Percent LDH release after challenge with 3 µM of ADMe-GR15 or unmethylated GR15 and dosing with MS023, compared to release after challenge of 3 µM of GR15 alone (two-way ANOVA with Dunnett’s multiple comparison; n = 3 for each dosing group; NS, P > 0.0657, ****P < 0.0001, ***P = 0.0002; mean ± s.e.m.). (F) Percent metabolic activity after challenge with 3 µM of ADMe-PR15 or unmethylated PR15 and dosing with MS023, compared to activity after challenge of 3 µM of PR15 alone (two-way ANOVA with Dunnett’s multiple comparison; n = 3 for each dosing group; NS, P > 0.1830, ****P < 0.0001, ***P = 0.0004, #P > 0.0242; mean ± s.e.m.). (G) Percent LDH release after challenge with 3 µM of ADMe-PR15 or unmethylated PR15 and dosing with MS023, compared to release after challenge of 3 µM of PR15 alone (two-way ANOVA with Dunnett’s multiple comparison; n = 3 for each dosing group; NS, P > 0.0.2947, ****P < 0.0001, ***P = 0.0007; ####P < 0.0001, ###P = 0.0004, #P > 0.0273 mean ± s.e.m.). For (D, F), 100% activity represents untreated NSC-34 cells, and 0% activity represents metabolic activity after 3 µM of GR15 or PR15 challenge alone, respectively. For (F, G), *- PR15 + MS023 compared to PR15 alone. # - ADMe-PR15 + MS023 compared to PR15 alone.

Similar articles

Cited by

References

    1. Ash P. E. A., Bieniek K. F., Gendron T. F., Caulfield T., Lin W.-L., DeJesus-Hernandez M., et al. (2013). Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS. Neuron 77, 639–646. 10.1016/j.neuron.2013.02.004 - DOI - PMC - PubMed
    1. Blanc R. S., Richard S. (2017). Arginine Methylation: The Coming of Age. Mol. Cell 65, 8–24. 10.1016/j.molcel.2016.11.003 - DOI - PubMed
    1. Calabrese V., Santoro A., Trovato Salinaro A., Modafferi S., Scuto M., Albouchi F., et al. (2018). Hormetic approaches to the treatment of Parkinson’s disease: Perspectives and possibilities. J. Neurosci. Res. 96 (10), 1641–1662. 10.1002/jnr.24244 - DOI - PubMed
    1. Cheng D., Côté J., Shaaban S., Bedford M. T. (2007). The Arginine Methyltransferase CARM1 Regulates the Coupling of Transcription and mRNA Processing. Mol. Cell 25, 71–83. 10.1016/j.molcel.2006.11.019 - DOI - PubMed
    1. DeJesus-Hernandez M., Mackenzie I. R., Boeve B. F., Boxer A. L., Baker M., Rutherford N. J., et al. (2011). Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 72, 245–256. 10.1016/j.neuron.2011.09.011 - DOI - PMC - PubMed