Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr-Jun;21(2):65-74.
doi: 10.4103/HEARTVIEWS.HEARTVIEWS_34_19. Epub 2020 Jun 29.

Endovascular Interventions to Superficial Femoral Artery Occlusion: Different Approaches, Technique, and Follow-up

Affiliations

Endovascular Interventions to Superficial Femoral Artery Occlusion: Different Approaches, Technique, and Follow-up

Santhosh Krishnappa et al. Heart Views. 2020 Apr-Jun.

Abstract

Background: Superficial femoral artery lesion is one of the main causes for intermittent claudication or critical limb ischemia. Percutaneous transluminal angioplasty is one of the approved therapies for this medical entity. Anatomical factors should be considered in choosing the right approach and puncture.The purpose of this study is to discuss the anatomical, radiological, and technical factors which determine the preference of various approaches and to determine its safety, efficacy, and mid-term clinical and radiological outcome.

Methods: Retrospectively, data were collected from patients who underwent angioplasty to superficial femoral arteries for total occlusion from January 2015 and June 2018 in our center, we performed angioplasty to 59 occluded superficial femoral artery patients at our center. The ipsilateral femoral artery, ipsilateral popliteal artery, contralateral femoral artery, or upper limb approaches were used depending on the various anatomical factors determined by radiological imaging before the procedure.

Results: Acute success rate was 91.52%. There were no significant periprocedural complications. At the latest clinical follow-up of mean 25.8 months (10-51), a restenosis rate of 16.67% in infrainguinal arteries and 5.88% in suprainguinal arteries were noted.

Conclusions: Percutaneous transluminal angioplasty of superficial femoral artery is a proven, viable, safer, and effective option, with good mid-term clinical results and patency rates. Different approaches to be chosen depends on the anatomical and technical factors to get the best possible outcome.

Keywords: Common femoral artery; infrainguinal arteries; left upper limb approach; percutaneous transarterial angioplasty; suprainguinal arteries.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Approach used at our center from January 2015 to June 2018 for superficial femoral artery occlusions
Figure 2
Figure 2
Protocol to decide on the initial puncture site. (a) Protocol to decide the initial puncture site in combined suprainguinal and superficial femoral artery lesions. (b) Protocol to decide the initial puncture site in isolated superficial femoral artery lesion. (c) Protocol to decide the initial puncture site in combined superficial femoral artery and below-knee lesions
Figure 3
Figure 3
PTA in combined right superficial femoral artery and right common iliac artery occlusion using ipsilateral common femoral artery puncture (First retrograde ipsilateral common femoral artery puncture is taken to address supringuinal artery lesion, then same puncture is converted into antegrade puncture to address superficial femoral artery occlusion). (a) Demonstration of right common iliac artery occlusion at its origin. (b) Stenting of right common iliac artery occlusion. (c) Final result after right common iliac artery stenting. (d) Entry into ipsilateral (right) superficial femoral artery after common iliac artery stenting with additional angled Terumo wire. (e) Sheath insertion antegradely into common femoral artery to address ipsilateral (right) superficial femoral artery lesion. (f) Demonstration of ipsilateral (right) superficial femoral artery occlusion. (g) Balloon dilatation of the superficial femoral artery lesion. (h) Final result of right superficial femoral artery after balloon dilatation
Figure 4
Figure 4
PTA of isolated superficial femoral artery occlusion through ipsilateral common femoral artery puncture. (a and b) Demonstration of the superficial femoral artery occlusion by antegrade ipsilateral superficial femoral artery injection. (c) Balloon dilatation of superficial femoral artery lesion. (d-f) Final result after balloon dilatation
Figure 5
Figure 5
PTA of isolated superficial femoral artery occlusion through ipsilateral popliteal artery puncture. (a) Demonstration of the superficial femoral artery occlusion by ipsilateral popliteal artery injection. (b) Demonstration of the superficial femoral artery occlusion at its ostium after crossing the lesion from the popliteal artery approach. (c and d) Balloon dilatation of the superficial femoral artery occlusion. (e and f) Final result after balloon dilatation
Figure 6
Figure 6
PTA of isolated superficial femoral artery occlusion through contralateral common femoral artery puncture. (a) Demonstration of superficial femoral artery occlusion at its origin. (b) Crossing the superficial femoral artery lesion by Terumo wire. (c) Balloon dilatation of the superficial femoral artery lesion. (d.f) Final result after balloon dilatation
Figure 7
Figure 7
PTA of combined right common iliac artery and right superficial femoral artery occlusion through the left upper limb artery (brachial) puncture. (a and b) Demonstration of right common iliac artery occlusion at its origin. (c) Balloon dilatation of right common iliac artery lesion. (d) Deployment of self-expandable stent at right common iliac artery lesion. (e) Angiogram of the right common iliac artery after stenting. (f) Demonstration of right superficial femoral artery occlusion. (g) Balloon dilatation of right superficial femoral artery occlusion. (h) Final result after right superficial femoral artery balloon dilatation
Figure 8
Figure 8
PTA of combined right superficial femoral artery and right infrapopliteal artery occlusion through ipsilateral common femoral artery puncture. (a) Demonstration of superficial femoral artery occlusion. (b) Balloon dilatation of superficial femoral artery lesion. (c) Final result of superficial femoral artery lesion after balloon angioplasty. (d and e) Crossing the infrapopliteal artery lesion by Terumo wire. (f-h) Final result of infrapopliteal artery lesion after balloon dilatation

References

    1. Aboyans V, Ricco JB, Bartelink ME, Björck M, Brodmann M, Cohnert T, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO) The task force for the diagnosis and treatment of peripheral arterial diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS) Eur Heart J. 2018;39:763–816. - PubMed
    1. Wiesinger B, Heller S, Schmehl J, Claussen CD, Wiskirchen J, Tepe G, et al. Percutaneous vascular interventions in the superficial femoral artery. A review. Minerva Cardioangiol. 2006;54:83–93. - PubMed
    1. Marcus AJ, Lotzof K, Howard A. Access to the superficial femoral artery in the presence of a “hostile groin”: A prospective study. Cardiovasc Intervent Radiol. 2007;30:351–4. - PubMed
    1. Nice C, Timmons G, Bartholemew P, Uberoi R. Retrograde vs. antegrade puncture for infra-inguinal angioplasty. Cardiovasc Intervent Radiol. 2003;26:370–4. - PubMed
    1. Saha S, Gibson M, Magee TR, Galland RB, Torrie EP. Early results of retrograde transpopliteal angioplasty of iliofemoral lesions. Cardiovasc Intervent Radiol. 2001;24:378–82. - PubMed