Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul 9;7(10):255-269.
doi: 10.15698/mic2020.10.731.

Plant and fungal products that extend lifespan in Caenorhabditis elegans

Affiliations
Review

Plant and fungal products that extend lifespan in Caenorhabditis elegans

Jan Martel et al. Microb Cell. .

Abstract

The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans.

Keywords: autophagy; caloric restriction mimetics; dietary supplements; hormesis; phytochemicals.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest: Y-F.K. is president of Chang Gung Biotechnology. J.D.Y. is Chairman of the Board of Chang Gung Biotechnology. The authors have filed patents related to the preparation and use of dietary supplements and probiotics.

Figures

Figure 1
Figure 1. FIGURE 1: Images of C. elegans nematode used as a model to study aging and longevity.
(A) Light microscopy and (B) fluorescence microscopy images of transgenic C. elegans strain CGUIS-1 expressing the nucleolar protein fibrillarin 1 (FIB-1) coupled to green fluorescent protein (GFP). FIB-1 is a marker of nucleolus size that negatively correlates with longevity across taxa [161], making the CGUIS-1 strain useful for screening natural products that may extend lifespan. In B, GFP auto-fluorescence is induced by ultraviolet light. The images are unpublished observations made by the authors.
Figure 2
Figure 2. FIGURE 2: Aging-related pathways modulated by plant and fungal molecules in C. elegans.
Plant and fungal molecules extend nematode lifespan by inducing the formation of ROS, by activating AAK-2/AMPK, or by inhibiting the insulin or TOR pathway. General cellular pathways are shown here, but variations may occur between cells of different tissues. Human protein homologs are given in green. Abbreviations: AGE-1, phosphatidylinositol 3-kinase age 1; AMP, adenosine monophosphate; ATP, adenosine triphosphate; AAK-2, 5' adenosine-monophosphate-activated protein kinase catalytic subunit alpha 2; AMPK, 5' adenosine-monophosphate-activated protein kinase; CAT, catalase; DAF, abnormal dauer formation protein; FOX, forkhead box; HLH-30, basic helix-loop-helix protein 30; HSF-1, heat-shock factor 1; HSPs, heat-shock proteins; IGF-1, insulin-like growth factor 1; IGF-1R, insulin-like growth factor 1 receptor; IR, insulin receptor; JNK, c-Jun N-terminal kinase; mTOR, mammalian target of rapamycin; Nrf, nuclear factor erythroid 2-related factor; PDK-1, 3' phosphoinositide-dependent protein kinase 1; PHA-4, defective pharyngeal development protein 4; PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; SGK-1, serum and glucocorticoid-regulated kinase-1; Sir-2.1, sirtuin 2.1; SIRT-1, sirtuin 1; SKN-1, skinhead 1; SOD, superoxide dismutase; TFEB, HLH transcription factor EB; TOR, target of rapamycin.

Similar articles

Cited by

References

    1. Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell. 2016;15(2):196–207. doi: 10.1111/acel.12427. - DOI - PMC - PubMed
    1. Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328(5976):321–326. doi: 10.1126/science.1172539. - DOI - PMC - PubMed
    1. Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng CW, Madia F, Fontana L, Mirisola MG, Guevara-Aguirre J, Wan J, Passarino G, Kennedy BK, Wei M, Cohen P, Crimmins EM, Longo VD. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–417. doi: 10.1016/j.cmet.2014.02.006. - DOI - PMC - PubMed
    1. Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, Pichaud N, Melvin RG, Gokarn R, Khalil M, Turner N, Cooney GJ, Sinclair DA, Raubenheimer D, Le Couteur DG, Simpson SJ. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–430. doi: 10.1016/j.cmet.2014.02.009. - DOI - PMC - PubMed
    1. Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med. 2008;10(4):236–246. doi: 10.1007/s12017-008-8037-y. - DOI - PMC - PubMed