Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep;24(18):9274-9281.
doi: 10.26355/eurrev_202009_23009.

Research progress on the oxazolidinone drug linezolid resistance

Affiliations
Free article
Review

Research progress on the oxazolidinone drug linezolid resistance

B-G Liu et al. Eur Rev Med Pharmacol Sci. 2020 Sep.
Free article

Abstract

Objective: The oxazolidinone drug linezolid is mainly used for severe infections caused by multidrug-resistant Gram-positive bacteria. However, emerging linezolid resistance is aggravating difficulties in the treatment of certain infectious diseases. The objective of this review was to provide a reference for researchers and clinicians to be able to better face together the serious challenge of antimicrobial resistance.

Materials and methods: A systematic literature search was performed using PubMed, Web of Science, Google Scholar, and the China National Knowledge Infrastructure (CNKI) database. The articles were scrutinized to extract information on oxazolidinone drug linezolid resistance, and the prevalence of the resistance gene optrA. We reviewed the latest advances in epidemic properties, resistance mechanism, and transfer mechanism of linezolid resistance genes in different isolates isolated from various samples worldwide.

Results: Initially, it was thought that linezolid resistance was related to the change in drug target mediated by mutations in the 23S rRNA gene, rplC, rplD, and cfr. optrA was discovered in 2015, and is a gene encoding oxazolidinone resistance, which exists in both plasmids and chromosomes, but mostly plasmids. The emergence of the novel plasmid-borne ABC transporter gene optrA expanded the understanding of the mechanism of linezolid resistance.

Conclusions: At present, the prevalence of linezolid resistance has become increasingly serious. The resistance gene optrA has been reported in Enterococcus, Staphylococcus squirrel and Streptococcus, which indicates that this gene has a strong ability to spread across bacteria, so the prevalence and spread of optrA gene should be monitored carefully.

PubMed Disclaimer

Publication types

MeSH terms