Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul:2020:142-145.
doi: 10.1109/EMBC44109.2020.9176228.

Deep Learning Techniques to Improve Intraoperative Awareness Detection from Electroencephalographic Signals

Deep Learning Techniques to Improve Intraoperative Awareness Detection from Electroencephalographic Signals

Oleksii Avilov et al. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul.

Abstract

Every year, millions of patients regain conscious- ness during surgery and can potentially suffer from post-traumatic disorders. We recently showed that the detection of motor activity during a median nerve stimulation from electroencephalographic (EEG) signals could be used to alert the medical staff that a patient is waking up and trying to move under general anesthesia [1], [2]. In this work, we measure the accuracy and false positive rate in detecting motor imagery of several deep learning models (EEGNet, deep convolutional network and shallow convolutional network) directly trained on filtered EEG data. We compare them with efficient non-deep approaches, namely, a linear discriminant analysis based on common spatial patterns, the minimum distance to Riemannian mean algorithm applied to covariance matrices, a logistic regression based on a tangent space projection of covariance matrices (TS+LR). The EEGNet improves significantly the classification performance comparing to other classifiers (p- value <; 0.01); moreover it outperforms the best non-deep classifier (TS+LR) for 7.2% of accuracy. This approach promises to improve intraoperative awareness detection during general anesthesia.

PubMed Disclaimer

Publication types