Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul:2020:580-583.
doi: 10.1109/EMBC44109.2020.9176188.

Multi-label Arrhythmia Classification from Fixed-length Compressed ECG Segments in Real-time Wearable ECG Monitoring

Multi-label Arrhythmia Classification from Fixed-length Compressed ECG Segments in Real-time Wearable ECG Monitoring

Yunfei Cheng et al. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul.

Abstract

Recently, classification from compressed physiological signals in compressed sensing has been successfully applied to cardiovascular disease monitoring. However, in real-time wearable electrocardiogram (ECG) monitoring, it is very difficult to directly obtain the heartbeats information from compressed ECG signals. Thus arrhythmia classification from compressed ECG signals has to be handled in fixed-length segments instead of individual heartbeats. An inevitable issue is that a fixed-length ECG segment may contain multiple different types of arrhythmia. As a result, it is not appropriate to represent the multi-type real arrhythmia with a single label. In this paper, we first introduce multiple labels into fixed-length compressed ECG segments to challenge the arrhythmia classification issue. Then, we propose a deep learning model, which can directly classify multiple different types of arrhythmia from fixed-length compressed ECG segments with the advantages of low time cost for data processing and relatively high classification accuracy at a high compression ratio. Experimental results on the MIT-BIH arrhythmia database show that the exact match rate of our proposed method has reached 96.03% at CR(Compression Ratio)=70%, 94.99% at CR=80% and 93.19% at CR=90%.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources