Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli
- PMID: 3301811
- PMCID: PMC212456
- DOI: 10.1128/jb.169.8.3712-3719.1987
Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli
Abstract
Dissimilation of L-fucose as a carbon and energy source by Escherichia coli involves a permease, an isomerase, a kinase, and an aldolase encoded by the fuc regulon at minute 60.2. Utilization of L-rhamnose involves a similar set of proteins encoded by the rha operon at minute 87.7. Both pathways lead to the formation of L-lactaldehyde and dihydroxyacetone phosphate. A common NAD-linked oxidoreductase encoded by fucO serves to reduce L-lactaldehyde to L-1,2-propanediol under anaerobic growth conditions, irrespective of whether the aldehyde is derived from fucose or rhamnose. In this study it was shown that anaerobic growth on rhamnose induces expression of not only the fucO gene but also the entire fuc regulon. Rhamnose is unable to induce the fuc genes in mutants defective in rhaA (encoding L-rhamnose isomerase), rhaB (encoding L-rhamnulose kinase), rhaD (encoding L-rhamnulose 1-phosphate aldolase), rhaR (encoding the positive regulator for the rha structural genes), or fucR (encoding the positive for the fuc regulon). Thus, cross-induction of the L-fucose enzymes by rhamnose requires formation of L-lactaldehyde; either the aldehyde itself or the L-fuculose 1-phosphate (known to be an effector) formed from it then interacts with the fucR-encoded protein to induce the fuc regulon.
Similar articles
-
A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.J Bacteriol. 1988 May;170(5):2352-8. doi: 10.1128/jb.170.5.2352-2358.1988. J Bacteriol. 1988. PMID: 2834341 Free PMC article.
-
Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation.J Bacteriol. 1988 Jan;170(1):416-21. doi: 10.1128/jb.170.1.416-421.1988. J Bacteriol. 1988. PMID: 3275622 Free PMC article.
-
Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli.J Bacteriol. 1984 Mar;157(3):828-32. doi: 10.1128/jb.157.3.828-832.1984. J Bacteriol. 1984. PMID: 6421801 Free PMC article.
-
NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli.J Bacteriol. 1987 Jul;169(7):3289-94. doi: 10.1128/jb.169.7.3289-3294.1987. J Bacteriol. 1987. PMID: 3298215 Free PMC article.
-
L-Rhamnose isomerase and its use for biotechnological production of rare sugars.Appl Microbiol Biotechnol. 2016 Apr;100(7):2985-92. doi: 10.1007/s00253-016-7369-z. Epub 2016 Feb 15. Appl Microbiol Biotechnol. 2016. PMID: 26875877 Review.
Cited by
-
Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster.J Bacteriol. 1994 Dec;176(23):7223-32. doi: 10.1128/jb.176.23.7223-7232.1994. J Bacteriol. 1994. PMID: 7961494 Free PMC article.
-
Novel aspects of ethylene glycol catabolism.Appl Microbiol Biotechnol. 2024 Jun 11;108(1):369. doi: 10.1007/s00253-024-13179-2. Appl Microbiol Biotechnol. 2024. PMID: 38861200 Free PMC article. Review.
-
Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans.PLoS One. 2013;8(1):e54337. doi: 10.1371/journal.pone.0054337. Epub 2013 Jan 28. PLoS One. 2013. PMID: 23382892 Free PMC article.
-
Regulation of arabinose and xylose metabolism in Escherichia coli.Appl Environ Microbiol. 2010 Mar;76(5):1524-32. doi: 10.1128/AEM.01970-09. Epub 2009 Dec 18. Appl Environ Microbiol. 2010. PMID: 20023096 Free PMC article.
-
Functional Analysis of Deoxyhexose Sugar Utilization in Escherichia coli Reveals Fermentative Metabolism under Aerobic Conditions.Appl Environ Microbiol. 2021 Jul 27;87(16):e0071921. doi: 10.1128/AEM.00719-21. Epub 2021 Jul 27. Appl Environ Microbiol. 2021. PMID: 34047632 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases