Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul:2020:3007-3010.
doi: 10.1109/EMBC44109.2020.9175593.

Decoding movement direction from cortical microelectrode recordings using an LSTM-based neural network

Decoding movement direction from cortical microelectrode recordings using an LSTM-based neural network

Brian Premchand et al. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul.

Abstract

Brain-machine interfaces (BMIs) allow individuals to communicate with computers using neural signals, and Kalman Filter (KF) are prevailingly used to decode movement directions from these neural signals. In this paper, we implemented a multi-layer long short-term memory (LSTM)based artificial neural network (ANN) for decoding BMI neural signals. We collected motor cortical neural signals from a nonhuman primate (NHP), implanted with microelectrode array (MEA) while performing a directional joystick task. Next, we compared the LSTM model in decoding the joystick trajectories from the neural signals against the prevailing KF model. The results showed that the LSTM model yielded significantly improved decoding accuracy measured by mean correlation coefficient (0.84, p < 10-7) than the KF model (0.72). In addition, using a principal component analysis (PCA)-based dimensionality reduction technique yielded slightly deteriorated accuracies for both the LSTM (0.80) and KF (0.70) models, but greatly reduced the computational complexity. The results showed that the LSTM decoding model holds promise to improve decoding in BMIs for paralyzed humans.

PubMed Disclaimer