Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul:2020:3501-3504.
doi: 10.1109/EMBC44109.2020.9175710.

Torque Estimation Using Neural Drive for a Concentric Contraction

Torque Estimation Using Neural Drive for a Concentric Contraction

Logan P Leahy et al. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul.

Abstract

The scope and relevance of wearable robotics spans across a number of research fields with a variety of applications. A challenge across these research areas is improving user-interface control. One established approach is using neural control interfaces derived from surface electromyography (sEMG). Although there has been some success with sEMG controlled prosthetics, the coarse nature of traditional sEMG processing has limited the development of fully functional prosthetics and wearable robotics. To solve this problem, blind source separation (BSS) techniques have been implemented to extract the user's movement intent from high-density sEMG (HDsEMG) measurements; however, current methods have only been well validated during static, low-level muscle contractions, and it is unclear how they will perform during movement. In this paper we present a neural drive based method for predicting output torque during a constant force, concentric contraction. This was achieved by modifying an existing HDsEMG decomposition algorithm to decompose 1 sec. overlapping windows. The neural drive profile was computed using both rate coding and kernel smoothing. Neither rate coding nor kernel smoothing performed as well as HDsEMG amplitude estimation, indicating that there are still significant limitations in adapting current methods to decompose dynamic contractions, and that sEMG amplitude estimation methods still remain highly reliable estimators.

PubMed Disclaimer