Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct 4;12(10):2859.
doi: 10.3390/cancers12102859.

Immunotherapy for Hepatocellular Carcinoma: A 2021 Update

Affiliations
Review

Immunotherapy for Hepatocellular Carcinoma: A 2021 Update

Christo Kole et al. Cancers (Basel). .

Abstract

Hepatocellular carcinoma (HCC) is one of one of the most frequent liver cancers and the fourth leading cause of cancer-related mortality worldwide. Current treatment options such as surgery, neoadjuvant chemoradiotherapy, liver transplantation, and radiofrequency ablation will benefit only a very small percentage of patients. Immunotherapy is a novel treatment approach representing an effective and promising option against several types of cancer. The aim of our study is to present the currently ongoing clinical trials and to evaluate the efficacy of immunotherapy in HCC. In this paper, we demonstrate that combination of different immunotherapies or immunotherapy with other modalities results in better overall survival (OS) and progression-free survival (PFS) compared to single immunotherapy agent. Another objective of this paper is to demonstrate and highlight the importance of tumor microenvironment as a predictive and prognostic marker and its clinical implications in immunotherapy response.

Keywords: adoptive cellular immunotherapy; cancer vaccines; hepatocellular carcinoma; immune checkpoint inhibitors; immunotherapy; microsatellite instability; oncolytic viruses; tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Figures

Figure 1
Figure 1
Hepatocellular carcinoma microenvironment. (A) Tumor microenvironment creates a barrier from extracellular matrix for immunotherapy as well as for cytotoxic drugs to act significantly in HCC. (B) Resistance mechanisms in HCC inducing tumor progression, immunosuppression, and cancer cell survival. Activation of Wnt/CTNNB1 signaling inhibits CCL5 production, thereby DC recruitment. Hypoxia and activation of HIF-1a promotes recruitment of MDSCs, Tregs, and TANs, whereas HCV infection and MDSCs promote T-cell apoptosis through activation of TIM3 receptor by Galectin-9 secretion by monocytes. HCC: hepatocellular carcinoma cells; ECM: extracellular matrix; TAM: tumor-associated macrophages; ΤAΝ: tumor-associated neutrophils; MDSCs: myeloid-derived suppressive cells; CTLs: cytotoxic T-lymphocytes; Tregs: CD4+ regulatory T cells; NKT cells: natural killer T cells; DC: dendritic cells IL: interleukin; TGF-β: transforming growth factor beta; IFNs: interferons; HiF1-a: hypoxia-inducible factor-1α; VEGF: vascular endothelial growth factor; CCL2: C-C motif chemokine ligand 2; CCL5: CC-chemokine ligand 5; CXCL12: C-X-C motif chemokine 12; CSF-1: colony stimulating factor 1; IFITM2: interferon-induced transmembrane protein 2.

References

    1. Yang J.D., Hainaut P., Gores G.J., Amadou A., Plymoth A., Roberts L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019;16:589–604. doi: 10.1038/s41575-019-0186-y. - DOI - PMC - PubMed
    1. Global Burden of Disease Cancer Collaboration. Fitzmaurice C., Allen C., Barber R.M., Barregard L., Bhutta Z.A., Brenner H., Dicker D.J., Chimed-Orchir O., Dandona R., et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–548. doi: 10.1001/jamaoncol.2016.5688. - DOI - PMC - PubMed
    1. Zhuo Y., Chen Q., Chhatwal J., Hoshida Y. Changing epidemiology of hepatocellular carcinoma and role of surveillance. In: Hoshida Y., editor. Hepatocellular Carcinoma: Translational Precision Medicine Approaches. Humana Press Cham; Totowa, NJ, USA: 2019. pp. 53–67. - DOI - PubMed
    1. World Health Organization Projections of Mortality and Causes of Death, 2016 to 2060. [(accessed on 9 November 2018)]; Available online: http://www.who.int/healthinfo/global_burden_disease/projections/en/
    1. El-Serag H.B. Hepatocellular carcinoma. N. Engl. J. Med. 2011;365:1118–1127. doi: 10.1056/NEJMra1001683. - DOI - PubMed

LinkOut - more resources