Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep;67(3):438-45.
doi: 10.3171/jns.1987.67.3.0438.

Bacterial adhesion to cerebrospinal fluid shunts

Bacterial adhesion to cerebrospinal fluid shunts

J A Guevara et al. J Neurosurg. 1987 Sep.

Abstract

Bacterial adherence to cerebrospinal fluid (CSF) shunts was analyzed in vivo and in vitro. Scanning electron micrographs (SEM's) of catheters removed from pediatric patients with shunts infected by Staphylococcus aureus or Klebsiella pneumoniae revealed numerous bacterial cells and microcolonies, leukocytes, and erythrocytes attached to the CSF catheters' inner walls, as well as the existence of surface irregularities, such as fissures, rugosities, and holes. Permeability analyses and SEM's demonstrated that catheters develop physical alterations over the period of implantation. Different bacterial strains presented a different in vitro adherence to CSF shunts, suggesting that this attachment may be affected by specific properties of the outer structures of each strain. The attachment of microbial pathogens to CSF shunts seems to contribute to the persistence of bacterial cells within a catheter and the onset of recurrent shunt infection. This study demonstrated that some bacteria can remain attached within shunts in vitro despite a CSF flow at rates up to 200 times higher than those normally demonstrated in vivo. Furthermore, surface irregularities found throughout this study may help to anchor and hide bacterial microcolonies. Based on these findings, it seems advisable to remove an infected shunt and to replace it with a new one after proper antimicrobial therapy, in order to prevent recurrent infections.

PubMed Disclaimer

MeSH terms

LinkOut - more resources