Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 14;142(41):17802-17809.
doi: 10.1021/jacs.0c09520. Epub 2020 Oct 6.

Total Synthesis of (-)-Mitrephorone A Enabled by Stereoselective Nitrile Oxide Cycloaddition and Tetrasubstituted Olefin Synthesis

Affiliations

Total Synthesis of (-)-Mitrephorone A Enabled by Stereoselective Nitrile Oxide Cycloaddition and Tetrasubstituted Olefin Synthesis

Michael Schneider et al. J Am Chem Soc. .

Abstract

A highly enantioselective and diastereoselective total synthesis of the diterpenoid (-)-mitrephorone A is presented. Key to the synthesis are stereocontrolled 1,4-semihydrogenation of a 1,3-diene to a tetrasubstituted double bond, enzyme-catalyzed malonate desymmetrization, and highly diastereoselective nitrile oxide cycloaddition. The streamlined strategy is a considerable improvement to those reported earlier in terms of diastereo- and enantioselectivity. For the first time, the combination of modern Pd-cross-coupling with Cr-catalyzed reduction allows for rapid access to tetrasubstituted olefins with full stereocontrol.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. (−)-Mitrephorone A (1) and Retrosynthetic Analysis
Scheme 2
Scheme 2. Stereochemical Considerations Associated with Olefin Functionalization
Scheme 3
Scheme 3. Synthesis of Tetrasubstituted Olefin via Ireland–Claisen Rearrangement
Reagents and conditions: (a) TBSCl, imidazole, DMAP, CH2Cl2, r.t., 73%; (b) isopropenylmagnesium bromide (14), LaCl3·2LiCl, THF, then 13, 0 °C to r.t., 86%, dr = 6:5; (c) PhNMe2, AcCl, 50 °C, 64%; (d) LiHMDS, TBSCl, HMPA, THF, −78 °C to r.t., then 1 M HCl; (e) MeI, K2CO3, DMF, r.t., 87% over two steps, dr = 2.3:1; (f) DIBAL-H, PhMe, −78 °C to r.t., 59% trans-17, 27% cis-17.
Scheme 4
Scheme 4. Conceptual Approach to Tetrasubstituted Olefin Synthesis via Cross-Coupling and 1,4-Semihydrogenation
Scheme 5
Scheme 5. Synthesis of Isoxazoline 26 via Nitrile Oxide Cycloaddition
Reagents and conditions: (a) Pd(PPh3)4 (3 mol%), NaHCO3, DME–H2O (9:1), 80 °C, then HCl, MeOH, r.t., 66%; (b) TBSCl, imidazole, DMAP (20 mol%), CH2Cl2, r.t., 94%; (c) H2 (70 bar), [Cr(CO)36-MeOBz)] (50 mol%), acetone, 120 °C, 97%; (d) TBAF, THF, r.t., 91%; (e) pig liver esterase (PLE), aq NaOH, 0.1 M pH 7 sodium phosphate buffer–DMSO (10:1), r.t., dr = 20:1; (f) TBSCl, imidazole, DMAP, CH2Cl2, r.t.; K2CO3, MeOH–THF–H2O (20:10:3), r.t.; (g) ClCO2Me, Et3N, THF, 0 °C to r.t.; NaBH4, MeOH, 0 °C, 68% over three steps; (h) DMP, t-BuOH, CH2Cl2, r.t., 71%; (i) H2NOH·HCl, EtOH–pyr (8:1), r.t., 82%; (j) PhI(OAc)2, MeOH, 0 °C; PhMe, Δ, 64%; (k) TBAF, THF, 60 °C, 99%; (l) DMP, t-BuOH, CH2Cl2, r.t., 86%; (m) MeLi, THF–Et2O (3:1), −78 °C; (n) DMP, t-BuOH, CH2Cl2, r.t., 94% over two steps.
Figure 1
Figure 1
Putative transition states for nitrile oxide cycloaddition.
Scheme 6
Scheme 6. Envisioned Optimization of the Route
Scheme 7
Scheme 7. Synthesis of Vinyl Boronate 33
Reagents and conditions: (a) pig liver esterase (PLE), aq NaOH, 0.1 M pH 7 sodium phosphate buffer–DMSO (10:1), r.t.; (b) ClCO2Me, Et3N, THF, 0 °C to r.t.; NaBH4, MeOH, 0 °C, 64% from 29e; (c) TBDPSCl, imidazole, DMAP (20 mol%), CH2Cl2, r.t., 95%; (d) PPTS (20 mol%), EtOH, r.t.; (e) DMP, t-BuOH, CH2Cl2, r.t., 87% over two steps; (f) MePPh3Br, KOt-Bu, THF, r.t., 86%; (g) isopropenylboronic acid pinacol ester (18d), Grubbs second-generation catalyst (10 mol%), CH2Cl2, 50 °C, 49%.
Scheme 8
Scheme 8. Synthesis of Tetrasubstituted Olefin 37
Reagents and conditions: (a) TMSCl, imidazole, THF, r.t., then KHMDS, −78 °C, then Comins reagent (34), −78 °C, then aq HCl, r.t., 79%; (b) DMP, t-BuOH, CH2Cl2, r.t., 85%; (c) MeLi, THF, −78 °C; (d) DMP, t-BuOH, CH2Cl2, r.t., 52% over two steps; (e) 33, Pd(PPh3)4 (2.5 mol%), NaHCO3, DME–H2O (9:1), 85 °C, 65%; (f) H2 (70 bar), [Cr(CO)36-MeOBz)] (50 mol%), acetone, 120 °C, 93%.
Scheme 9
Scheme 9. Synthesis of 42 via Nitrile Oxide Cycloaddition
Reagents and conditions: (a) TBAF, THF, r.t.; (b) DMP, t-BuOH, CH2Cl2, r.t., 73% over two steps; (c) H2NOH·HCl, pyr–EtOH (8:1), r.t., 85%; (d) PhI(OAc)2, MeOH, 0 °C; PhMe, Δ, 52%; (e) Me3OBF4, CH2Cl2, r.t., then TMSOTf, Et3N, r.t., 69%; (f) Zn, AcOH, 50 °C, 65%; (g) H2 (1 atm), Pd/C (30 mol%), EtOAc, r.t., 77%; (h) H2 (1 atm), Pd/C, EtOAc–AcOH (5:1), 80 °C, 72%.
Scheme 10
Scheme 10. Completion of the Synthesis
Reagents and conditions: (a) KOt-Bu, O2, THF, −78 °C, then PPh3, −78 °C to r.t., 72%; (b) DMP, t-BuOH, CH2Cl2; SiO2, hexane–EtOAc (3:1), 74%; (c) PhI(OH)OTs, NaHCO3, CH2Cl2, 72%.

References

    1. Fraga B. M. The Trachylobane Diterpenes. Phytochem. Anal. 1994, 5, 49–56. 10.1002/pca.2800050202. - DOI
    1. Li C.; Lee D.; Graf T. N.; Phifer S. S.; Nakanishi Y.; Burgess J. P.; Riswan S.; Setyowati F. M.; Saribi A. M.; Soejarto D. D.; Farnsworth N. R.; Falkinham J. O. III; Kroll D. J.; Kinghorn A. D.; Wani M. C.; Oberlies N. H. A Hexacyclic ent-Trachylobane Diterpenoid Possessing an Oxetane Ring from Mitrephora glabra. Org. Lett. 2005, 7, 5709–5712. 10.1021/ol052498l. - DOI - PMC - PubMed
    1. Richter M. J. R.; Schneider M.; Brandstätter M.; Krautwald S.; Carreira E. M. Total Synthesis of (−)-Mitrephorone A. J. Am. Chem. Soc. 2018, 140, 16704–16710. 10.1021/jacs.8b09685. - DOI - PubMed
    1. Wein L. A.; Wurst K.; Angyal P.; Weisheit L.; Magauer T. Synthesis of (−)-Mitrephorone A via a Bioinspired Late Stage C-H Oxidation of (−)-Mitrephorone B. J. Am. Chem. Soc. 2019, 141, 19589–19593. 10.1021/jacs.9b11646. - DOI - PMC - PubMed
    2. Very recently, Renata and co-workers reported a semisynthetic approach to (−)-mitrephorone A:

    3. Zhang X.; King-Smith E.; Dong L.-B.; Yang L.-C.; Rudolf J. D.; Shen B.; Renata H. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 2020, 369, 799–806. 10.1126/science.abb8271. - DOI - PMC - PubMed
    1. Zgoda-Pols J. R.; Freyer A. J.; Killmer L. B.; Porter J. R. Antimicrobial diterpenes from the stem bark of Mitrephora celebica. Fitoterapia 2002, 73, 434–438. 10.1016/S0367-326X(02)00124-7. - DOI - PubMed