A deep learning approach to programmable RNA switches
- PMID: 33028812
- PMCID: PMC7541447
- DOI: 10.1038/s41467-020-18677-1
A deep learning approach to programmable RNA switches
Abstract
Engineered RNA elements are programmable tools capable of detecting small molecules, proteins, and nucleic acids. Predicting the behavior of these synthetic biology components remains a challenge, a situation that could be addressed through enhanced pattern recognition from deep learning. Here, we investigate Deep Neural Networks (DNN) to predict toehold switch function as a canonical riboswitch model in synthetic biology. To facilitate DNN training, we synthesize and characterize in vivo a dataset of 91,534 toehold switches spanning 23 viral genomes and 906 human transcription factors. DNNs trained on nucleotide sequences outperform (R2 = 0.43-0.70) previous state-of-the-art thermodynamic and kinetic models (R2 = 0.04-0.15) and allow for human-understandable attention-visualizations (VIS4Map) to identify success and failure modes. This work shows that deep learning approaches can be used for functionality predictions and insight generation in RNA synthetic biology.
Conflict of interest statement
The authors declare no competing interests.
Figures





Similar articles
-
Sequence-to-function deep learning frameworks for engineered riboregulators.Nat Commun. 2020 Oct 7;11(1):5058. doi: 10.1038/s41467-020-18676-2. Nat Commun. 2020. PMID: 33028819 Free PMC article.
-
Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.ACS Synth Biol. 2013 Aug 16;2(8):463-72. doi: 10.1021/sb4000096. Epub 2013 Mar 28. ACS Synth Biol. 2013. PMID: 23654267 Free PMC article.
-
Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.Methods Enzymol. 2015;550:41-71. doi: 10.1016/bs.mie.2014.10.031. Epub 2014 Dec 19. Methods Enzymol. 2015. PMID: 25605380
-
Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria.J Mol Biol. 2022 Sep 30;434(18):167689. doi: 10.1016/j.jmb.2022.167689. Epub 2022 Jun 16. J Mol Biol. 2022. PMID: 35717997 Review.
-
Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators.FEBS Lett. 2012 Jul 16;586(15):2076-83. doi: 10.1016/j.febslet.2012.02.038. Epub 2012 Feb 28. FEBS Lett. 2012. PMID: 22710175 Review.
Cited by
-
MoiRNAiFold: a novel tool for complex in silico RNA design.Nucleic Acids Res. 2021 May 21;49(9):4934-4943. doi: 10.1093/nar/gkab331. Nucleic Acids Res. 2021. PMID: 33956139 Free PMC article.
-
Sequence-to-function deep learning frameworks for engineered riboregulators.Nat Commun. 2020 Oct 7;11(1):5058. doi: 10.1038/s41467-020-18676-2. Nat Commun. 2020. PMID: 33028819 Free PMC article.
-
Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch.Nucleic Acids Res. 2021 Mar 18;49(5):2985-2999. doi: 10.1093/nar/gkab100. Nucleic Acids Res. 2021. PMID: 33619539 Free PMC article.
-
Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of-Interest Labeling.Front Oncol. 2021 Oct 21;11:734015. doi: 10.3389/fonc.2021.734015. eCollection 2021. Front Oncol. 2021. PMID: 34745954 Free PMC article.
-
Predicting target-ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery.Sci Rep. 2022 May 19;12(1):8434. doi: 10.1038/s41598-022-12180-x. Sci Rep. 2022. PMID: 35589824 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases