Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec;20(12):743-756.
doi: 10.1038/s41568-020-00302-4. Epub 2020 Oct 8.

Non-genetic mechanisms of therapeutic resistance in cancer

Affiliations
Review

Non-genetic mechanisms of therapeutic resistance in cancer

Jean-Christophe Marine et al. Nat Rev Cancer. 2020 Dec.

Abstract

Therapeutic resistance continues to be an indominable foe in our ambition for curative cancer treatment. Recent insights into the molecular determinants of acquired treatment resistance in the clinical and experimental setting have challenged the widely held view of sequential genetic evolution as the primary cause of resistance and brought into sharp focus a range of non-genetic adaptive mechanisms. Notably, the genetic landscape of the tumour and the non-genetic mechanisms used to escape therapy are frequently linked. Remarkably, whereas some oncogenic mutations allow the cancer cells to rapidly adapt their transcriptional and/or metabolic programme to meet and survive the therapeutic pressure, other oncogenic drivers convey an inherent cellular plasticity to the cancer cell enabling lineage switching and/or the evasion of anticancer immunosurveillance. The prevalence and diverse array of non-genetic resistance mechanisms pose a new challenge to the field that requires innovative strategies to monitor and counteract these adaptive processes. In this Perspective we discuss the key principles of non-genetic therapy resistance in cancer. We provide a perspective on the emerging data from clinical studies and sophisticated cancer models that have studied various non-genetic resistance pathways and highlight promising therapeutic avenues that may be used to negate and/or counteract the non-genetic adaptive pathways.

PubMed Disclaimer

References

    1. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012). - PubMed
    1. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug. Discov. 17, 509–527 (2018). - PubMed
    1. Smaglo, B. G., Aldeghaither, D. & Weiner, L. M. The development of immunoconjugates for targeted cancer therapy. Nat. Rev. Clin. Oncol. 11, 637–648 (2014). - PubMed - PMC
    1. Meric-Bernstam, F. & Mills, G. B. Overcoming implementation challenges of personalized cancer therapy. Nat. Rev. Clin. Oncol. 9, 542–548 (2012). - PubMed
    1. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015). - PubMed - PMC

Publication types

LinkOut - more resources