Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun 26;6(2):87-95.
doi: 10.4103/bc.bc_1_20. eCollection 2020 Apr-Jun.

Multiple flow-related intracranial aneurysms in the setting of contralateral carotid occlusion: Coincidence or association?

Affiliations
Review

Multiple flow-related intracranial aneurysms in the setting of contralateral carotid occlusion: Coincidence or association?

Cassidy Werner et al. Brain Circ. .

Abstract

The prevalence of intracranial aneurysms (IAs) is higher in patients with internal carotid artery (ICA) stenosis, likely due to alterations in intracranial hemodynamics. Severe stenosis or occlusion of one ICA may result in increased demand and altered hemodynamics in the contralateral ICA, thus increasing the risk of contralateral IA formation. In this article, we discuss a relevant case and a comprehensive literature review as it pertains to the association of ICA stenosis and IA. Our patient was a 50-year-old female with a chronic asymptomatic right ICA occlusion who presented with diffuse subarachnoid hemorrhage. Emergent angiography revealed left-sided A1-A2 junction, paraclinoid, left middle cerebral artery (MCA) bifurcation, and left anterior temporal artery aneurysms. Brisk filling of the right anterior circulation through the anterior communicating artery was also identified, signifying increased demand on the left ICA circulation. Complete obliteration of all aneurysms was achieved with coil embolization and clipping. For our literature review, we searched the PubMed and EMBASE databases for case reports and case series, as well as references in previously published review articles that described patients with concurrent aneurysms and ICA stenosis. We selected articles that provided adequate information about the case presentations to compare aneurysm and patient characteristics. Our review revealed a higher number of patients with multiple aneurysms contralateral (25%) to rather than ipsilateral to (6%), the ICA stenosis. We discuss the pathogenesis and management of multiple flow-related IA in the context of the existing literature related to concurrent ICA stenosis and IA.

Keywords: Carotid stenosis; endovascular; flow-related aneurysm; intracranial aneurysm; neurosurgery; subarachnoid hemorrhage.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
(a) Noncontrast axial head computed tomography demonstrating diffuse subarachnoid hemorrhage. (b) Left internal carotid anteroposterior (AP) injection showing left-sided 8 mm × 5 mm A1-A2 junction aneurysm, 3 mm × 2 mm left paraclinoid aneurysm, 3 mm × 3.5 mm middle cerebral artery bifurcation aneurysm with an excrescence, and a 2.7 mm left anterior temporal artery aneurysm (arrows). Note the large anterior communicating artery (ACOM), through which the right anterior circulation is supplied. (b and c) Left internal carotid AP injections demonstrate filling of the right anterior circulation through the ACOM complex
Figure 2
Figure 2
Left anterior oblique injection better demonstrating the left middle cerebral artery bifurcation aneurysm with dome excrescence
Figure 3
Figure 3
(a) Final left anterior oblique injection demonstrating complete obliteration of the left A1A2 junction (blue arrow), paraclinoid (green arrow), and middle cerebral artery bifurcation (yellow arrow) aneurysms
Figure 4
Figure 4
(a) Angiogram post left anterior temporal artery aneurysm clipping performed 6 weeks following initial presentation. Left anterior oblique injection demonstrating stable complete obliteration of the left A1A2 junction (blue arrow), paraclinoid (green arrow), and middle cerebral artery bifurcation (yellow arrow) aneurysms. The left anterior temporal artery aneurysm has been obliterated by clipping (red arrow)

Similar articles

Cited by

References

    1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. Lancet Neurol. 2011;10:626–36. - PubMed
    1. Bederson JB, Awad IA, Wiebers DO, Piepgras D, Haley EC, Jr, Brott T, et al. Recommendations for the management of patients with unruptured intracranial aneurysms: A statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke. 2011;31:2742–50. - PubMed
    1. Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8. - PubMed
    1. Etminan N, Brown RD, Jr, Beseoglu K, Juvela S, Raymond J, Morita A, et al. The unruptured intracranial aneurysm treatment score: A multidisciplinary consensus. Neurology. 2018;85:881–9. - PMC - PubMed
    1. Lin N, Cahill KS, Frerichs KU, Friedlander RM, Claus EB. Treatment of ruptured and unruptured cerebral aneurysms in the USA: A paradigm shift. J Neurointerv Surg. 2018;10:i69–i76. - PubMed