Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec 7;64(6):883-894.
doi: 10.1042/EBC20200014.

Enhancer RNA: biogenesis, function, and regulation

Affiliations
Review

Enhancer RNA: biogenesis, function, and regulation

Rong Ye et al. Essays Biochem. .

Abstract

Enhancers are noncoding DNA elements that are present upstream or downstream of a gene to control its spatial and temporal expression. Specific histone modifications, such as monomethylation on histone H3 lysine 4 (H3K4me1) and H3K27ac, have been widely used to assign enhancer regions in mammalian genomes. In recent years, emerging evidence suggests that active enhancers are bidirectionally transcribed to produce enhancer RNAs (eRNAs). This finding not only adds a new reliable feature to define enhancers but also raises a fundamental question of how eRNAs function to activate transcription. Although some believe that eRNAs are merely transcriptional byproducts, many studies have demonstrated that eRNAs execute crucial tasks in regulating chromatin conformation and transcription activation. In this review, we summarize the current understanding of eRNAs from their biogenesis, functions, and regulation to their pathological significance. Additionally, we discuss the challenges and possible mechanisms of eRNAs in regulated transcription.

Keywords: Chromosomal looping; Enhancer; Promoter; RNA polymerase II; eRNA.

PubMed Disclaimer

Publication types

LinkOut - more resources