Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1987 May-Jun;23(3):361-72.

[Origin and evolution of peptide-protein bioregulators]

[Article in Russian]
  • PMID: 3303757
Review

[Origin and evolution of peptide-protein bioregulators]

[Article in Russian]
G I Chipens et al. Zh Evol Biokhim Fiziol. 1987 May-Jun.

Abstract

Possible evolutionary pathways of cellular regulatory systems are discussed. Analysis of animal evolution suggests that peptide and protein bioregulators emerged at an early stage during formation of biochemical systems in prokaryotic cells involving protein synthesis on ribosomes, the processes of exo- and endocytosis and limited proteolysis reactions. Primary autocrine bioregulators are compared with growth factors. Models for cellular bioregulation are discussed in which both cell receptors and peptide/protein ligands, primarily immunoglobins, act as prehormones. Their internalization and limited proteolysis can lead to formation of low-molecular peptides (tetines) acting as autocrine or paracrine bioregulators. Basing on the concept of biochemical universality, it is suggested that the effects of many growth factors, hormones, immunoglobulins, mono- and lymphokins are mediated by identical or similar (carrying the same signatures) fragments which are produced in cells due to limited proteolysis reactions and which are directly involved in activation of biochemical systems in these cells.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources