Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;13(4):392-397.
doi: 10.1007/s12194-020-00589-w. Epub 2020 Oct 10.

Parametrization of in-air spot size as a function of energy and air gap for the ProteusPLUS pencil beam scanning proton therapy system

Affiliations

Parametrization of in-air spot size as a function of energy and air gap for the ProteusPLUS pencil beam scanning proton therapy system

Suresh Rana et al. Radiol Phys Technol. 2020 Dec.

Abstract

The purpose of this study was to parametrize the in-air one sigma spot size for various energies and air gaps in pencil beam scanning (PBS) proton therapy. The current study included range shifters with a water equivalent thickness (WET) of 40 mm (RS40) and 75 mm (RS75). For RS40, the spot sizes were measured for energies ranging from 80 to 225 MeV in increments of 2.5 MeV, whereas the air gap was varied from 5 to 25 cm in increments of 2.5 cm. For RS75, the spot sizes were measured for energies ranging from 120 to 225 MeV in increments of 2.5 MeV, whereas the air gap was varied from 5 to 35 cm in increments of 2.5 cm. For both RS40 and RS75, all measurements (n = 1090) were acquired at the isocenter using a Lynx 2D scintillation detector. For RS40, the spot sizes increased from 3.1 mm to 10.4 mm, whereas the variation in spot sizes for RS75 ranged from 3.3 mm to 13.1 mm. For each range shifter, an analytical equation demonstrating the relationship of the spot size with the proton energy and air gap was obtained. The best parametrization results were obtained with the 3rd degree polynomial fits of the energy and air gap parameters. The average difference between the modeled and measured spot sizes was 0.0 ± 0.1 mm (range, - 0.24-0.21 mm) for RS40, and 0.0 ± 0.1 mm (range, - 0.23-0.15 mm) for RS75. In conclusion, the analytical model agrees within ± 0.25 mm of the measured spot sizes on a ProteusPLUS PBS proton system with a PBS dedicated nozzle.

Keywords: Air gap; Analytical model; Proton therapy; Range shifter; Spot size.

PubMed Disclaimer

LinkOut - more resources