Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 1:583:571-578.
doi: 10.1016/j.jcis.2020.09.072. Epub 2020 Sep 25.

Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding

Affiliations

Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding

Gaojie Han et al. J Colloid Interface Sci. .

Abstract

Flexible and ultrathin electromagnetic interference (EMI) shielding films are urgently required to manage increasingly serious radiation pollution. In this work, the EMI shielding performance and flexibility of conductive polymer films were addressed by assembling magnetic graphene-based hybrid and cellulose nanofiber (CNF). Briefly, magnetic graphene hybrid anchored by Ni nanoparticles (TRGO@Ni) was synthesized by in situ thermal reduction. Then, highly flexible and ultrathin CNF/TRGO@Ni film with "brick-mortar" layered structure was assembled via a facile vacuum filtration method. As expected, CNF/TRGO@Ni film with 50 wt% filler loading exhibits an enhanced electrical conductivity (262.7 S/m) and EMI shielding effectiveness (32.2 dB) comparing to CNF/TRGO film. Moreover, the excellent mechanical flexibility of CNF/TRGO@Ni film results in that the electrical conductivity and EMI SE only declines by 7.5% after bending 1000 cycles. The EMI shielding mechanism is attributed to the combination of enhancing impedance mismatch, multireflection in "brick-mortar" lamellar structure and endowing synergetic loss by graphene and Ni nanoparticles.

Keywords: EMI shielding; Graphene/Ni hybrid; Layered structure; Synergetic loss.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources