Blood Glucose Estimation From Voice: First Review of Successes and Challenges
- PMID: 33041176
- DOI: 10.1016/j.jvoice.2020.08.034
Blood Glucose Estimation From Voice: First Review of Successes and Challenges
Abstract
The possibility to estimate glucose value from voice would make a breakthrough in diabetes treatment: namely, remove the delay in the nonintrusive instantaneous blood glucose estimation, relieve medical budgets and significantly improve wellbeing of diabetics. In this review, different approaches have been described and systematized, in order to provide an objective snapshot of the state of the art. Since nonintrusive glucose estimation is notoriously difficult, we included a Transparence and Reproducibility Score aimed at revealing the biases in the primary research articles. The review is completed with the discussion on future research pathways.
Keywords: Blood glucose monitoring; Blood sugar value; Diabetes; Pattern recognition; Voice analysis; Voice characteristics.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26. Artif Intell Med. 2019. PMID: 31383477 Review.
-
Challenges and perspectives in continuous glucose monitoring.Chem Commun (Camb). 2018 May 15;54(40):5032-5045. doi: 10.1039/c8cc01678j. Chem Commun (Camb). 2018. PMID: 29687110 Review.
-
Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring.BMC Med Inform Decis Mak. 2019 Dec 19;19(Suppl 6):266. doi: 10.1186/s12911-019-0959-9. BMC Med Inform Decis Mak. 2019. PMID: 31856801 Free PMC article.
-
The Use of Auditory-Perceptual Training as a Research Method: A Summary Review.J Voice. 2022 May;36(3):322-334. doi: 10.1016/j.jvoice.2020.06.032. Epub 2020 Aug 1. J Voice. 2022. PMID: 32747174 Review.
-
The effectiveness of voice rehabilitation on vocalization in post-laryngectomy patients: a systematic review.JBI Libr Syst Rev. 2009;7(23):1004-1035. doi: 10.11124/01938924-200907230-00001. JBI Libr Syst Rev. 2009. PMID: 27820501
Cited by
-
Linear effects of glucose levels on voice fundamental frequency in type 2 diabetes and individuals with normoglycemia.Sci Rep. 2024 Aug 28;14(1):19012. doi: 10.1038/s41598-024-69620-z. Sci Rep. 2024. PMID: 39198592 Free PMC article.
-
Predicting frailty in older adults using vocal biomarkers: a cross-sectional study.BMC Geriatr. 2022 Jul 1;22(1):549. doi: 10.1186/s12877-022-03237-7. BMC Geriatr. 2022. PMID: 35778699 Free PMC article.
-
Acoustic Analysis and Prediction of Type 2 Diabetes Mellitus Using Smartphone-Recorded Voice Segments.Mayo Clin Proc Digit Health. 2023 Oct 17;1(4):534-544. doi: 10.1016/j.mcpdig.2023.08.005. eCollection 2023 Dec. Mayo Clin Proc Digit Health. 2023. PMID: 40206319 Free PMC article.
-
Identifying and Estimating Frailty Phenotypes by Vocal Biomarkers: Cross-Sectional Study.J Med Internet Res. 2024 Nov 8;26:e58466. doi: 10.2196/58466. J Med Internet Res. 2024. PMID: 39515817 Free PMC article.
-
Optimizing Voice Sample Quantity and Recording Settings for the Prediction of Type 2 Diabetes Mellitus: Retrospective Study.JMIR Biomed Eng. 2025 Jun 26;10:e64357. doi: 10.2196/64357. JMIR Biomed Eng. 2025. PMID: 40577411 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical