Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jan-Jun;11(1):20-27.
doi: 10.4103/njms.NJMS_9_20. Epub 2020 Jun 18.

Orbital volume measurements from magnetic resonance images using the techniques of manual planimetry and stereology

Affiliations

Orbital volume measurements from magnetic resonance images using the techniques of manual planimetry and stereology

Georgios Bontzos et al. Natl J Maxillofac Surg. 2020 Jan-Jun.

Abstract

Introduction: Current volume measurement techniques, for the orbit, are time-consuming and involve complex assessments, which prevents their routine clinical use. In this study, we evaluate the applicability and efficacy of stereology and planimetry in orbital volume measurements using magnetic resonance imaging (MRI).

Materials and methods: Prospective imaging study using MRI. Sheep craniums and human subjects were evaluated. Water-filling measurements were performed in animal skulls, as the standard validation technique. Planimetry and stereology techniques were used in each dataset. Intraobserver and interobserver reliability testing were applied.

Results: In stereology customization, 1/6 systematic sampling scheme was determined as optimal with acceptable coefficient of error (3.09%) and low measurement time (1.2 min). In sheep craniums, the mean volume measured by water displacement, planimetry, and stereology was 17.81 ± 0.59 cm3, 18.53 ± 0.24 cm3, and 19.19 ± 0.17 cm3, respectively. Planimetric and stereological methods were highly correlated (r = 0.94; P ≈ 0.001). The mean difference of the orbital volume using planimetry and stereology was 0.316 ± 0.168 cm3. In human subjects, using stereology, the mean orbital volume was found to be 19.62 ± 0.2 cm3 with a CE of 3.91 ± 0.15%.

Conclusions: The optimized stereological method was found superior to manual planimetry in terms of user effort and time spent. Stereology sampling of 1/6 was successfully applied in human subjects and showed strong correlation with manual planimetry. However, optimized stereological method tended to overestimate the orbital volume by about 1 cc, a considerable limitation to be taken in clinical practice.

Keywords: Eye; orbit; planimetry; skull; stereology.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
(a) Standard enucleation procedure of the soft tissue from the orbital cavity. The entire orbital contents were removed en bloc down to the optic canal. (b) The optic nerve was dissected from the canal part at the optic foramen and was isolated with the eye globe. (c) The orbital socket was immobilized in a perfectly horizontal direction. Then it was filled with water to measure the exact orbital volume
Figure 2
Figure 2
(a) Manual delineation of the orbital cavity on axial slicer by applying three-dimensional volume rendering in three-dimensional Slicer. (b) Three-dimensional model of the segmented orbit for measuring its total volume. (c) Stereological measurement of the orbital volume using the analyze software. A grid is placed over the slice and the green points which lie within the orbit are selected by the user. The total volume is then estimated based on the total number of point counts
Figure 3
Figure 3
(a) Model of the segmented orbit within the human skull on three-dimensional Slicer. (b) Manual delineation of the orbital cavity on an axial magnetic resonance imaging slice, to be used for manual planimetry measurement. (c) Stereological technique, using 1/6 sampling for calculating the orbital volume based on the selected point count
Figure 4
Figure 4
Bland–Altman plots for comparisons between methods. Upper plot: Differences in orbital volume estimates as defined by manual planimetry and the water-filling method. The mean difference is presented with the solid line whereas the 95% limits of agreement are shown with the dotted lines. Middle plot: Differences in orbital volume estimates as defined by the optimized stereological approach and the water-filling method. Lower plot: Differences in orbital volume measurement as defined by manual planimetry and stereology

Similar articles

Cited by

References

    1. Alinasab B, Beckman MO, Pansell T, Abdi S, Westermark AH, Stjärne P. Relative difference in orbital volume as an indication for surgical reconstruction in isolated orbital floor fractures. Craniomaxillofac Trauma Reconstr. 2011;4:203–12. - PMC - PubMed
    1. Heller RS, David CA, Heilman CB. Orbital reconstruction for tumor-associated proptosis: Quantitative analysis of postoperative orbital volume and final eye position. Journal of Neurosurgery. 2019;132:927–32. - PubMed
    1. Haskins CP, Nurkic S, Fredenburg KM, Dziegielewski PT, Mendenhall WM. Primary orbital melanoma treated with orbital exenteration and postoperative radiotherapy: A case report and review of the literature. Head Neck. 2018;40:E17–20. - PubMed
    1. Imai K, Fujimoto T, Takahashi M, Maruyama Y, Yamaguchi K. Preoperative and postoperative orbital volume in patients with Crouzon and Apert syndrome. J Craniofac Surg. 2013;24:191–4. - PubMed
    1. Gellrich NC, Schramm A, Hammer B, Rojas S, Cufi D, Lagrèze W, et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg. 2002;110:1417–29. - PubMed