Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2021 Feb;76(2):182-188.
doi: 10.1111/anae.15301. Epub 2020 Nov 3.

Aerosolisation during tracheal intubation and extubation in an operating theatre setting

Collaborators, Affiliations
Observational Study

Aerosolisation during tracheal intubation and extubation in an operating theatre setting

R S Dhillon et al. Anaesthesia. 2021 Feb.

Abstract

Aerosol-generating procedures such as tracheal intubation and extubation pose a potential risk to healthcare workers because of the possibility of airborne transmission of infection. Detailed characterisation of aerosol quantities, particle size and generating activities has been undertaken in a number of simulations but not in actual clinical practice. The aim of this study was to determine whether the processes of facemask ventilation, tracheal intubation and extubation generate aerosols in clinical practice, and to characterise any aerosols produced. In this observational study, patients scheduled to undergo elective endonasal pituitary surgery without symptoms of COVID-19 were recruited. Airway management including tracheal intubation and extubation was performed in a standard positive pressure operating room with aerosols detected using laser-based particle image velocimetry to detect larger particles, and spectrometry with continuous air sampling to detect smaller particles. A total of 482,960 data points were assessed for complete procedures in three patients. Facemask ventilation, tracheal tube insertion and cuff inflation generated small particles 30-300 times above background noise that remained suspended in airflows and spread from the patient's facial region throughout the confines of the operating theatre. Safe clinical practice of these procedures should reflect these particle profiles. This adds to data that inform decisions regarding the appropriate precautions to take in a real-world setting.

기관내 삽관 및 발관과 같은 에어로졸 생성 시술은 공기매 개 전파의 가능성이 있으므로 의료 종사자에게 잠재적 위험 을 초래할 수 있다. 에어로졸의 양, 입자 크기 및 생성 활동에 대한 자세한 특성 분석이 다수의 모의상황에서 수행되었으나, 실제 임상에서는 수행되지 않았다. 본 연구의 목적은 마스크 환기, 기관내 삽관 및 발관 과정이 임상에서 에어로졸을 생성 하는지 여부를 파악하고 생성된 모든 에어로졸의 특성을 분석 하는 것이었다. 본 관찰 연구에서는 코로나‐19의 증상이 없으 며 경비강 접근법을 이용한 선택적 뇌하수체 수술을 받을 예 정이었던 환자를 모집하였다. 기관내 삽관 및 발관을 포함한 기도 관리는 에어로졸이 검출된 표준 양압 수술실에서 수행되 었다. 레이저 기반 입자영상유속계를 사용하여 크기가 큰 입 자를 검출하였으며, 연속식 공기 샘플링을 이용한 분광분석법 으로 작은 크기의 입자를 검출하였다. 3명의 환자를 대상으로 전체 시술에 대해 총 482,960개의 데이터 포인트를 평가하였 다. 마스크 환기, 기관내 튜브 삽입 및 커프 팽창은 기류에 부 유하는 배경 노이즈를 30‐300배 초과하는 작은 입자를 생성 하였으며, 환자의 안면부로부터 수술실 영역 전체로 확산되었 다. 이러한 시술의 안전한 임상 진료 지침에는 이와 같은 입자 프로파일을 반영해야 한다. 이는 실제 환경에 적합한 예방조 치와 관련된 의사결정 정보를 제공하는 데이터에 추가된다.

Keywords: aerosol-generating procedures; extubation; intubation; occupational exposure.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Theatre setup showing the location of aerosol measuring equipment.
Figure 2
Figure 2
Particle count and diameter during intubation. (a) Time series of total number concentrations from the Aerodynamic Particle Sizer (APS) with linear and log scales shown in dark and light blue, respectively. Dashed lines represent the detection limit (mean + 3 standard deviations) during an empty theatre (green) and during theatre setup (red). (b) Measured aerosol size distributions over time from the APS, with size represented on the y‐axis and colours showing the number concentration in each size bin. The integrated size distributions correspond to total concentrations.
Figure 3
Figure 3
Particle count and diameter during extubation. (a) – (b) are as for Figure 2.
Figure 4
Figure 4
Particle image velocimetry high‐speed image taken during bag and mask ventilation. The image shows particles travelling from right (cranial) to left (caudal).

Comment in

Similar articles

Cited by

References

    1. Morawska L, Milton D. It is time to address airborne transmission of COVID‐19. Clinical Infectious Diseases 2020. Epub 6 July. 10.1093/cid/ciaa939. - DOI - PMC - PubMed
    1. Tran K, Cimon K, Severn M, Pessoa‐Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One 2012; 7: e35797. - PMC - PubMed
    1. Cheung JCH, Ho LT, Cheng JV, Cham EYK, Lam KN. Staff safety during emergency airway management for COVID‐19 in Hong Kong. Lancet Respiratory Medicine 2020; 8: 19. - PMC - PubMed
    1. Cook TM. Personal protective equipment during the coronavirus disease (COVID) 2019 pandemic – a narrative review. Anaesthesia 2020; 75: 920–7. - PubMed
    1. Pandit JJ. Demand‐capacity modelling and COVID‐19 disease: identifying themes for future NHS planning. Anaesthesia 2020. 10.1111/anae.15144. Epub 21 May. - DOI - PMC - PubMed

Publication types