Generation of Recombinant SARS-CoV-2 Using a Bacterial Artificial Chromosome
- PMID: 33048448
- PMCID: PMC7646048
- DOI: 10.1002/cpmc.126
Generation of Recombinant SARS-CoV-2 Using a Bacterial Artificial Chromosome
Abstract
SARS-CoV-2, the causative agent of COVID-19, has been responsible for a million deaths worldwide as of September 2020. At the time of this writing, there are no available US FDA-approved therapeutics for the treatment of SARS-CoV-2 infection. Here, we describe a detailed protocol to generate recombinant (r)SARS-CoV-2 using reverse-genetics approaches based on the use of a bacterial artificial chromosome (BAC). This method will allow the production of mutant rSARS-CoV-2-which is necessary for understanding the function of viral proteins, viral pathogenesis and/or transmission, and interactions at the virus-host interface-and attenuated SARS-CoV-2 to facilitate the discovery of effective countermeasures to control the ongoing SARS-CoV-2 pandemic. © 2020 Wiley Periodicals LLC. Basic Protocol: Generation of recombinant SARS-CoV-2 using a bacterial artificial chromosome Support Protocol: Validation and characterization of rSARS-CoV-2.
Keywords: COVID-19; SARS-CoV-2; bacterial artificial chromosome; coronavirus; infectious clone; reverse genetics; virus rescue.
© 2020 Wiley Periodicals LLC.
Conflict of interest statement
The authors declare not conflict of interest.
Figures




Similar articles
-
Rescue of SARS-CoV-2 from a Single Bacterial Artificial Chromosome.mBio. 2020 Sep 25;11(5):e02168-20. doi: 10.1128/mBio.02168-20. mBio. 2020. PMID: 32978313 Free PMC article.
-
Use of a Bacterial Artificial Chromosome to Generate Recombinant SARS-CoV-2 Expressing Robust Levels of Reporter Genes.Microbiol Spectr. 2022 Dec 21;10(6):e0273222. doi: 10.1128/spectrum.02732-22. Epub 2022 Nov 7. Microbiol Spectr. 2022. PMID: 36342302 Free PMC article.
-
Bacterial Artificial Chromosome Reverse Genetics Approaches for SARS-CoV-2.Methods Mol Biol. 2024;2733:133-153. doi: 10.1007/978-1-0716-3533-9_9. Methods Mol Biol. 2024. PMID: 38064031
-
Rescue of SARS-CoV-2 from a single bacterial artificial chromosome.bioRxiv [Preprint]. 2020 Jul 22:2020.07.22.216358. doi: 10.1101/2020.07.22.216358. bioRxiv. 2020. Update in: mBio. 2020 Sep 25;11(5):e02168-20. doi: 10.1128/mBio.02168-20. PMID: 32743573 Free PMC article. Updated. Preprint.
-
Reverse genetic systems of SARS-CoV-2 for antiviral research.Antiviral Res. 2023 Feb;210:105486. doi: 10.1016/j.antiviral.2022.105486. Epub 2022 Dec 22. Antiviral Res. 2023. PMID: 36657881 Free PMC article. Review.
Cited by
-
SARS-CoV-2 variants with NSP12 P323L/G671S mutations display enhanced virus replication in ferret upper airways and higher transmissibility.Cell Rep. 2023 Sep 26;42(9):113077. doi: 10.1016/j.celrep.2023.113077. Epub 2023 Sep 6. Cell Rep. 2023. PMID: 37676771 Free PMC article.
-
Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis.Cell Host Microbe. 2023 Oct 11;31(10):1668-1684.e12. doi: 10.1016/j.chom.2023.08.003. Epub 2023 Sep 21. Cell Host Microbe. 2023. PMID: 37738983 Free PMC article.
-
Monitoring SARS-CoV-2 Infection Using a Double Reporter-Expressing Virus.Microbiol Spectr. 2022 Oct 26;10(5):e0237922. doi: 10.1128/spectrum.02379-22. Epub 2022 Aug 18. Microbiol Spectr. 2022. PMID: 35980204 Free PMC article.
-
SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity.Res Sq [Preprint]. 2024 May 17:rs.3.rs-4292014. doi: 10.21203/rs.3.rs-4292014/v1. Res Sq. 2024. Update in: Nat Commun. 2025 May 12;16(1):4393. doi: 10.1038/s41467-025-59475-x. PMID: 38798602 Free PMC article. Updated. Preprint.
-
Analysis of SARS-CoV-2 infection dynamic in vivo using reporter-expressing viruses.Proc Natl Acad Sci U S A. 2021 Oct 12;118(41):e2111593118. doi: 10.1073/pnas.2111593118. Proc Natl Acad Sci U S A. 2021. PMID: 34561300 Free PMC article.
References
-
- Alfaraj, S. H. , Al‐Tawfiq, J. A. , Assiri, A. Y. , Alzahrani, N. A. , Alanazi, A. A. , & Memish, Z. A. (2019). Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS‐CoV) infection: A cohort study. Travel Medicine and Infectious Disease, 29, 48–50. doi: 10.1016/j.tmaid.2019.03.004. - DOI - PMC - PubMed
-
- Almazán, F. , Dediego, M. L. , Galán, C. , Escors, D. , Alvarez, E. , Ortego, J. , … Enjuanes, L. (2006). Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. Journal of Virology, 80(21), 10900–10906. doi: 10.1128/JVI.00385-06. - DOI - PMC - PubMed
-
- Ávila‐Pérez, G. , Nogales, A. , Park, J. G. , Vasquez, D. M. , Dean, D. A. , Barravecchia, M. , … Martínez‐Sobrido, L. (2020). In vivo rescue of recombinant Zika virus from an infectious cDNA clone and its implications in vaccine development. Scientific Reports, 10(1), 512. doi: 10.1038/s41598-020-57545-2. - DOI - PMC - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous