Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 13;17(6):065007.
doi: 10.1088/1478-3975/aba6d0.

Testing of asymptomatic individuals for fast feedback-control of COVID-19 pandemic

Affiliations

Testing of asymptomatic individuals for fast feedback-control of COVID-19 pandemic

Markus Müller et al. Phys Biol. .

Abstract

We argue that frequent sampling of the fraction of a priori non-symptomatic but infectious humans (either by random or cohort testing) significantly improves the management of the COVID-19 pandemic, when compared to intervention strategies relying on data from symptomatic cases only. This is because such sampling measures the incidence of the disease, the key variable controlled by restrictive measures, and thus anticipates the load on the healthcare system due to progression of the disease. The frequent testing of non-symptomatic infectiousness will (i) significantly improve the predictability of the pandemic, (ii) allow informed and optimized decisions on how to modify restrictive measures, with shorter delay times than the present ones, and (iii) enable the real-time assessment of the efficiency of new means to reduce transmission rates. These advantages are quantified by considering a feedback and control model of mitigation where the feedback is derived from the evolution of the daily measured prevalence. While the basic model we propose aggregates data for the entire population of a country such as Switzerland, we point out generalizations which account for hot spots which are analogous to Anderson-localized regions in the theory of diffusion in random media.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources