Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1987 Feb;66(2):436-41.
doi: 10.1177/00220345870660020901.

Structural aspects of salivary glycoproteins

Review

Structural aspects of salivary glycoproteins

M J Levine et al. J Dent Res. 1987 Feb.

Abstract

The protective functions of saliva are attributed, in part, to its serous and mucous glycoproteins. We have studied, as representative molecules, the proline-rich glycoprotein (PRG) from human parotid saliva and the high (MG1) and low (MG2) molecular weight mucins from submandibular-sublingual saliva. PRG (38.9 kDa) contains 40% carbohydrate consisting of 6 triantennary N-linked units and a single peptide chain of 231 amino acids, 75% of which = PRO + GLY + GLN. PRG's secondary structure is comprised of 70% random coil (naked regions) and 30% beta-turns (glycosylated domains). MG1 (greater than 10(3) kDa) contains 15% protein (several disulfide linked subunits), 78% carbohydrate (290 units of 4-16 residues), 7% sulfate, and small amounts of covalently linked fatty acids. MG2 (200-250 kDa) contains 30% protein (single peptide chain), 68% carbohydrate (170 units of 2-7 residues), and 2% sulfate. The major carbohydrate units of MG2 are: NeuAc alpha 2,3Gal beta 1,3GalNAc,Gal beta 1,3GalNAc, and Fuc alpha 1,2Gal beta 1,3GalNAc. MG1 contains hydrophobic domains, as evidenced by its ability to bind fluorescent hydrophobic probes; MG2 does not. Collectively, the biochemical and biophysical comparisons between MG1 and MG2 indicate that these two mucins are structurally different. Several functional properties of MG1, MG2, and PRG have been examined, including their presence in two-hour in vivo enamel pellicle, binding to synthetic hydroxyapatite, lubricating properties, and interactions with oral streptococci. The data presented suggest that these glycoproteins may have multiple functions which are predicated, in part on their carbohydrate units. The potential significance of the structure-function relationships of these glycoproteins to the oral ecology is discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources