Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Aug 27:12:265.
doi: 10.3389/fnagi.2020.00265. eCollection 2020.

Mechanisms of Pathogenic Tau and Aβ Protein Spreading in Alzheimer's Disease

Affiliations
Review

Mechanisms of Pathogenic Tau and Aβ Protein Spreading in Alzheimer's Disease

Paolo d'Errico et al. Front Aging Neurosci. .

Abstract

Alzheimer's disease (AD) is pathologically defined by extracellular accumulation of amyloid-β (Aβ) peptides generated by the cleavage of amyloid precursor protein (APP), strings of hyperphosphorylated Tau proteins accumulating inside neurons known as neurofibrillary tangles (NFTs) and neuronal loss. The association between the two hallmarks and cognitive decline has been known since the beginning of the 20th century when the first description of the disease was carried out by Alois Alzheimer. Today, more than 40 million people worldwide are affected by AD that represents the most common cause of dementia and there is still no effective treatment available to cure the disease. In general, the aggregation of Aβ is considered an essential trigger in AD pathogenesis that gives rise to NFTs, neuronal dysfunction and dementia. During the process leading to AD, tau and Aβ first misfold and form aggregates in one brain region, from where they spread to interconnected areas of the brain thereby inducing its gradual morphological and functional deterioration. In this mini-review article, we present an overview of the current literature on the spreading mechanisms of Aβ and tau pathology in AD since a more profound understanding is necessary to design therapeutic approaches aimed at preventing or halting disease progression.

Keywords: Alzheimer’s disease; amyloid-β; propagation; spreading; tau.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Intercellular transmission of pathological amyloid-β (Aβ) and tau proteins. Seeds of pathological proteins can be released at the presynaptic level: (1) in exosomes after the fusion of Multivesicular bodies (MVBs) with plasma membrane (PM); (2) in larger vesicles called ectosomes; (3) as naked protein freely crossing the PM; or (4) can be transferred via tunneling nanotubes. Mechanisms of up-take by recipient neurons include; (5) receptors-mediated endocytosis; (6) bulk-endocytosis; (7) fluid-phase translocation; (8) macropinocytosis mediated by heparan sulfate proteoglycans (HSPGs); and (9) fusion of large tau-containing large vescicles with PM. (10) Intraneuronal Aβ seeds can trigger or enhance the formation of tau pathological aggregates. The transmission process can be modulated by multiple factors, including glial cells.

Similar articles

Cited by

References

    1. Aamodt E. J., Williams R. C., Jr. (1984). Microtubule-associated proteins connect microtubules and neurofilaments in vitro. Biochemistry 23, 6023–6031. 10.1021/bi00320a019 - DOI - PubMed
    1. Abounit S., Wu J. W., Duff K., Victoria G. S., Zurzolo C. (2016). Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion 10, 344–351. 10.1080/19336896.2016.1223003 - DOI - PMC - PubMed
    1. Ahmed Z., Cooper J., Murray T. K., Garn K., McNaughton E., Clarke H., et al. . (2014). A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 127, 667–683. 10.1007/s00401-014-1254-6 - DOI - PMC - PubMed
    1. Andreadis A. (2005). Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim. Biophys. Acta 1739, 91–103. 10.1016/j.bbadis.2004.08.010 - DOI - PubMed
    1. Andreadis A., Brown W. M., Kosik K. S. (1992). Structure and novel exons of the human tau gene. Biochemistry 31, 10626–10633. 10.1021/bi00158a027 - DOI - PubMed

LinkOut - more resources