Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 1:119:1-12.
doi: 10.1016/j.actbio.2020.10.013. Epub 2020 Oct 13.

Calcium phosphate cements: Optimization toward biodegradability

Affiliations
Free article
Review

Calcium phosphate cements: Optimization toward biodegradability

I Lodoso-Torrecilla et al. Acta Biomater. .
Free article

Abstract

Synthetic calcium phosphate (CaP) ceramics represent the most widely used biomaterials for bone regenerative treatments due to their biological performance that is characterized by bioactivity and osteoconductive properties. From a clinical perspective, injectable CaP cements (CPCs) are highly appealing, as CPCs can be applied using minimally invasive surgery and can be molded to optimally fill irregular bone defects. Such CPCs are prepared from a powder and a liquid component, which upon mixing form a paste that can be injected into a bone defect and hardens in situ within an appropriate clinical time window. However, a major drawback of CPCs is their poor degradability. Ideally, CPCs should degrade at a suitable pace to allow for concomitant new bone to form. To overcome this shortcoming, control over CPC degradation has been explored using multiple approaches that introduce macroporosity within CPCs. This strategy enables faster degradation of CPC by increasing the surface area available to interact with the biological surroundings, leading to accelerated new bone formation. For a comprehensive overview of the path to degradable CPCs, this review presents the experimental procedures followed for their development with specific emphasis on (bio)material properties and biological performance in pre-clinical bone defect models.

Keywords: Calcium phosphate cements; degradation; macroporosity.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflict of interest and no benefit of any kind was received directly or indirectly.

Publication types

LinkOut - more resources