Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec 15:263:118589.
doi: 10.1016/j.lfs.2020.118589. Epub 2020 Oct 15.

Cellular plasticity and drug resistance in sarcoma

Affiliations
Review

Cellular plasticity and drug resistance in sarcoma

Zhengjun Lin et al. Life Sci. .

Abstract

Sarcomas, originating from mesenchymal progenitor stem cells, are a group of rare malignant tumors with poor prognosis. Wide surgical resection, chemotherapy, and radiotherapy are the most common sarcoma treatments. However, sarcomas' response rates to chemotherapy are quite low and sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multi-drug resistance (MDR). Cancer cellular plasticity plays pivotal roles in cancer initiation, progression, therapy resistance and cancer relapse. Moreover, cancer cellular plasticity can be regulated by a multitude of factors, such as genetic and epigenetic alterations, tumor microenvironment (TME) or selective pressure imposed by treatment. Recent studies have demonstrated that cellular plasticity is involved in sarcoma progression and chemoresistance. It's essential to understand the molecular mechanisms of cellular plasticity as well as its roles in sarcoma progression and drug resistance. Therefore, this review focuses on the regulatory mechanisms and pathological roles of these diverse cellular plasticity programs in sarcoma. Additionally, we propose cellular plasticity as novel therapeutic targets to reduce sarcoma drug resistance.

Keywords: Cellular plasticity; Drug resistance; Epithelial-mesenchymal transition; Sarcoma; Tumor microenvironment.

PubMed Disclaimer

Similar articles

Cited by

Substances