Time-to-contact perception in the brain
- PMID: 33070400
- DOI: 10.1002/jnr.24740
Time-to-contact perception in the brain
Abstract
Time-to-contact (TTC) perception refers to the ability of an observer to estimate the remaining time before an object reaches a point in the environment, and is of crucial importance in daily life. Noninvasive correlational approaches have identified several brain areas sensitive to TTC information. Here we report the results of two studies, including one during an awake brain surgery, that aimed to identify the specific areas causally engaged in the TTC estimation process. In Study 1, we tested 40 patients with brain tumor in a TTC estimation task. The results showed that four of the six patients with impaired performance had tumors in right upper parietal cortex, although this tumoral location represented only six over 40 patients. In Study 2, 15 patients underwent awake brain surgery electrostimulation mapping to examine the implication of various brain areas in the TTC estimation process. We acquired and normalized to MNI space the coordinates of the functional areas that influenced task performance. Our results seem to demonstrate that the early stage of the TTC estimation process involved specific cortical territories in the ventral region of the right intraparietal sulcus. Downstream processing of TTC could also involve the frontal eye field (middle frontal gyrus) related to ocular search. We also found that deactivating language areas in the left hemisphere interfered with the TTC estimation process. These findings demonstrate a fine grained, cortical representation of TTC processing close to the ventral right intraparietal sulcus and complement those described in other human studies.
Keywords: awake brain surgery; brain mapping; direct electrostimulation; peripersonal space; time-to-contact estimation.
© 2020 Wiley Periodicals LLC.
References
REFERENCES
-
- Aravind, G., & Lamontagne, A. (2014). Perceptual and locomotor factors affect obstacle avoidance in persons with visuospatial neglect. Journal of NeuroEngineering and Rehabilitation, 11(1), 38.
-
- Assmus, A., Marshall, J. C., Ritzl, A., Noth, J., Zilles, K., & Fink, G. R. (2003). Left inferior parietal cortex integrates time and space during collision judgments. NeuroImage, 20, 82-88. https://doi.org/10.1016/j.neuroimage.2003.09.025
-
- Astafiev, S. V., Shulman, G. L., Stanley, C. M., Snyder, A. Z., Van Essen, D. C., & Corbetta, M. (2003). Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. The Journal of Neuroscience, 23, 4689-4699. https://doi.org/10.1523/JNEUROSCI.23-11-04689.2003
-
- Avillac, M., Denève, S., Olivier, E., Pouget, A., & Duhamel, J. R. (2005). Reference frames for representing visual and tactile locations in parietal cortex. Nature Neuroscience, 8, 941-949. https://doi.org/10.1038/nn1480
-
- Baurès, R., Balestra, M., Rosito, M., & VanRullen, R. (2018). The detrimental influence of attention on time-to-contact perception. Attention, Perception & Psychophysics, 80, 1591-1598. https://doi.org/10.3758/s13414-018-1523-x
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical