Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb;23(2):249-258.
doi: 10.1038/s41436-020-00990-1. Epub 2020 Oct 19.

Laboratory analysis of acylcarnitines, 2020 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG)

Affiliations
Free article

Laboratory analysis of acylcarnitines, 2020 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG)

Marcus J Miller et al. Genet Med. 2021 Feb.
Free article

Abstract

Acylcarnitine analysis is a useful test for identifying patients with inborn errors of mitochondrial fatty acid β-oxidation and certain organic acidemias. Plasma is routinely used in the diagnostic workup of symptomatic patients. Urine analysis of targeted acylcarnitine species may be helpful in the diagnosis of glutaric acidemia type I and other disorders in which polar acylcarnitine species accumulate. For newborn screening applications, dried blood spot acylcarnitine analysis can be performed as a multiplex assay with other analytes, including amino acids, succinylacetone, guanidinoacetate, creatine, and lysophosphatidylcholines. Tandem mass spectrometric methodology, established more than 30 years ago, remains a valid approach for acylcarnitine analysis. The method involves flow-injection analysis of esterified or underivatized acylcarnitines species and detection using a precursor-ion scan. Alternative methods utilize liquid chromatographic separation of isomeric and isobaric species and/or detection by selected reaction monitoring. These technical standards were developed as a resource for diagnostic laboratory practices in acylcarnitine analysis, interpretation, and reporting.

Keywords: acylcarnitine; clinical genetic testing; fatty acid oxidation disorders; organic acidemias; tandem mass spectrometry.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pasquali M, Longo N. Newborn screening and inborn errors of metabolism. In: Rifai N, Horvath AR, Wittwer C, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 6th ed. St. Louis: Elsevier; 2018. p. 1697–1730.
    1. Matern D. Acylcarnitines, including in vitro loading tests. In: Blau N, Duran M, Gibson KM, editors. Laboratory guide to the methods in biochemical genetics. Berlin: Springer; 2008. p. 171–206.
    1. Sweetman L, Millington DS, Therrell BL, et al. Naming and counting disorders (conditions) included in newborn screening panels. Pediatrics. 2006;117:S308–314. - PubMed
    1. Violante S, Ijlst L, Ruiter J, et al. Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Biochim Biophys Acta. 2013;1832:773–779. - PubMed
    1. Violante S, Ijlst L, van Lenthe H, de Almeida IT, Wanders RJ, Ventura FV. Carnitine palmitoyltransferase 2: New insights on the substrate specificity and implications for acylcarnitine profiling. Biochim Biophys Acta. 2010;1802:728–732. - PubMed