Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 13:6:23.
doi: 10.1186/s40959-020-00079-3. eCollection 2020.

Early- and late anthracycline-induced cardiac dysfunction: echocardiographic characterization and response to heart failure therapy

Affiliations

Early- and late anthracycline-induced cardiac dysfunction: echocardiographic characterization and response to heart failure therapy

Janine A M Kamphuis et al. Cardiooncology. .

Abstract

Background: Anthracycline-induced cardiac dysfunction (ACD) is a notorious side effect of anticancer treatment. It has been described as a phenomenon of a continuous progressive decline of cardiac function, eventually leading to dilated cardiomyopathy (DCM). This progressive nature suggests that patients with a delayed ACD diagnosis have greater compromise of cardiac function and more adverse remodeling, with a poor response to heart failure (HF) treatment. This study aimed to delineate the impact of a delayed ACD diagnosis on echocardiographic characteristics and response to HF treatment.

Methods and results: From the population of our cardio-oncology outpatient clinic, 92 ACD patients were included in this study (age 51.6 ± 16.2 years, median cumulative anthracycline dose 329 [200-329] mg/m2), and a median follow-up of 25.0 [9.6-37.2] months after ACD diagnosis. Median time to ACD diagnosis for patients diagnosed early (< 1 year) and late (> 1 year) was 4.0 vs. 47.7 months respectively. There were no echocardiographic differences between patients diagnosed early vs. late (LVEF 43.6 ± 4.9% vs. 43.0 ± 6.2% and iEDV 63.6 vs. 62.9 mL/m2). Eighty-three percent of patients presented with mild LV dysfunction and in 79% the LV was not dilated. Patients diagnosed early were more likely to have (partial) recovery of cardiac function upon HF treatment initiation (p = 0.015).

Conclusions: In the setting of a cardio-oncology outpatient clinic, patients with ACD presented with a hypokinetic non-dilated cardiomyopathy, rather than typical DCM. Timing of ACD diagnosis did not impact HF disease severity. However, in patients receiving an early diagnosis, cardiac function was more likely to recover upon HF treatment.

Keywords: Anthracyclines; Cardiac dysfunction; Cardiac effects of cancer treatment; Heart failure.

PubMed Disclaimer

Conflict of interest statement

Competing interestsNone declared.

Figures

Fig. 1
Fig. 1
Flow chart of the study population selection
Fig. 2
Fig. 2
Echocardiographic characterization of early- and late diagnosed anthracycline-induced cardiac dysfunction and follow-up. a The radar chart shows the echocardiographic phenotype at diagnosis of early- and late ACD, which are both characterized by a mild hypokinetic, non-dilated cardiomyopathy. LVEF and GLS are expressed as group means, LV mass, iEDV and RV function are expressed as % of patients with normal outcomes and diastolic function is expressed as % of patients with diastolic dysfunction ≤ grade I; b Individual time periods of time to ACD diagnosis and follow-up outcomes regarding i) hospitalization due to heart failure ii) recovery of LV function and iii) (non-)cardiac death
Fig. 3
Fig. 3
Echocardiographic outcomes at time of diagnosis. The dashed line represents the time-point of 1 year, which is used to differentiate between early- and late ACD. a Left ventricular ejection fraction; b Global longitudinal strain; c End-diastolic volume, indexed for body surface area and classified as ‘normal’ or ‘dilated’; d LV geometry, based on LV dimension and LV mass

References

    1. Von Hoff DD, Layard MW, Basa P, Davis HL, von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–717. doi: 10.7326/0003-4819-91-5-710. - DOI - PubMed
    1. Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013;112:1980–1984. doi: 10.1016/j.amjcard.2013.08.026. - DOI - PubMed
    1. Fornaro A, Olivotto I, Rigacci L, Ciaccheri M, Tomberli B, Ferrantini C, et al. Comparison of long-term outcome in anthracycline-related versus idiopathic dilated cardiomyopathy: a single Centre experience. Eur J Heart Fail. 2018;20(5):898–906. doi: 10.1002/ejhf.1049. - DOI - PubMed
    1. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–1084. doi: 10.1056/NEJM200004133421502. - DOI - PubMed
    1. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC) Eur Heart J. 2016;37(36):2768–2801. doi: 10.1093/eurheartj/ehw211. - DOI - PubMed

LinkOut - more resources