Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec;2(12):e779-e790.
doi: 10.1016/S2665-9913(20)30340-4. Epub 2020 Oct 9.

Imperfect storm: is interleukin-33 the Achilles heel of COVID-19?

Affiliations
Review

Imperfect storm: is interleukin-33 the Achilles heel of COVID-19?

Gaetano Zizzo et al. Lancet Rheumatol. 2020 Dec.

Abstract

The unique cytokine signature of COVID-19 might provide clues to disease mechanisms and possible future therapies. Here, we propose a pathogenic model in which the alarmin cytokine, interleukin (IL)-33, is a key player in driving all stages of COVID-19 disease (ie, asymptomatic, mild-moderate, severe-critical, and chronic-fibrotic). In susceptible individuals, IL-33 release by damaged lower respiratory cells might induce dysregulated GATA-binding factor 3-expressing regulatory T cells, thereby breaking immune tolerance and eliciting severe acute respiratory syndrome coronavirus 2-induced autoinflammatory lung disease. Such disease might be initially sustained by IL-33-differentiated type-2 innate lymphoid cells and locally expanded γδ T cells. In severe COVID-19 cases, the IL-33-ST2 axis might act to expand the number of pathogenic granulocyte-macrophage colony-stimulating factor-expressing T cells, dampen antiviral interferon responses, elicit hyperinflammation, and favour thromboses. In patients who survive severe COVID-19, IL-33 might drive pulmonary fibrosis by inducing myofibroblasts and epithelial-mesenchymal transition. We discuss the therapeutic implications of these hypothetical pathways, including use of therapies that target IL-33 (eg, anti-ST2), T helper 17-like γδ T cells, immune cell homing, and cytokine balance.

PubMed Disclaimer

Figures

Figure 1
Figure 1
T-cell polarisation in COVID-19 IL-33 released from virus-damaged cells might induce dysregulated GATA3+Foxp3+ Tregs and promote IL-2 production by dendritic cells, resulting in further expansion of Tregs. IL-33 might also elicit differentiation of ILC2, with TGFβ enhancing ST2 expression on these cells and facilitating production of IL-9. IL-9 in turn stimulates expansion of effector memory Vγ9Vδ2+ T cells with mixed Th1 and Th17 profiles that express CXCR3 and are recruited to the lungs by CXCL9 and CXCL10. IL-9 possibly induces its own transcription factor PU.1 and thus act in an autocrine and paracrine manner (along with TGFβ) to drive proliferation and survival of ILC2 and γδ T cells. Additional positive loops might be fed by IFNγ, which triggers production of CXCL9 and CXCL10 by macrophages. In severe forms of COVID-19, IL-33, along with IL-2 and IL-7 released by dendritic cells, might further stimulate T-cell expansion through STAT5 and induce production of large amounts of GM-CSF by γδ and T helper cells. At advanced stages of disease, aberrant activation of the MyD88-related NF-κB pathway and activation of the NLRP3 inflammasome might induce virus-exposed cells and infiltrating monocytes–macrophages to overproduce IL-1β, IL-23, and IL-6. IL-1β, IL-23, IL-6, and IL-7 act on STAT3 and RORC, thus promoting differentiation of CCR2+ T cells that are recruited to the lungs by CCL2 and CCL8 into γδT17 and Th17 cells producing IL-17 and GM-CSF. In turn, GM-CSF might further recruit and activate proinflammatory monocytes–macrophages. CCR=C-C motif chemokine receptor. CCL=C-C motif chemokine ligand. CXCL=C-X-C motif chemokine ligand. CXCR=C-X-C chemokine receptor. Foxp=forkhead box protein. GATA=GATA-binding factor. GM-CSF=granulocyte-macrophage colony-stimulating factor. IL=interleukin. ILC2=type 2 innate lymphoid cell. MyD88=myeloid differentiation primary response protein. NF-κB=nuclear factor-kappa B. NLRP=NACHT, LRR, and PYD domains-containing protein. PU.1=transcription factor PU.1. RORC=nuclear receptor ROR-gamma. ST2=ST2 receptor. STAT=signal transducer and transcription activator. TGF=transforming growth factor. Th=T-helper. TLR=toll-like receptors. Treg=regulatory T cell.
Figure 2
Figure 2
IL-33 might orchestrate all pathogenic phases of COVID-19 IL-33 might induce numerous cytokines and chemokines as well as its own receptor, ST2, in various cell types. In asymptomatic or paucisymptomatic patients, IL-33 might expand anti-inflammatory Foxp3+ Treg cells or induce IL-4 production by GATA3+Foxp3+ Tregs and ILC2, thus stimulating mast cells, which might account for minor, allergy-like symptoms. In individuals with mild-to-moderate disease, IL-33 (along with TGFβ) might induce ILC2 to release large amounts of IL-9, driving local expansion of effector memory Vγ9Vδ2+ T cells in the lungs. In moderate–to-severe pneumonia, IL-33 combined with IL-2 and IL-7 from dendritic cells might further expand ILC2, γδT cells, and GM-CSF-producing T cells. In severe–critical COVID-19, IL-33, GM-CSF, and IL-1 might stimulate each other's release by acting on multiple cell types. IL-33 induction of cytokines, chemokines, adhesion molecules, tissue factor, and neutrophil extracellular traps might contribute to endothelialitis, thrombosis, and extrapulmonary involvement in patients with MAS-like disease. Neutrophil extracellular traps and mast cell degranulation could provoke protease-mediated cleavage of IL-33 into a 10–30 times more potent form, and IL-33-induced release of its soluble receptor ST2 might further polarise T cells and contribute to cardiovascular manifestations. In patients who survive, IL-33 might drive the post-acute fibrotic phase thorugh induction of IL-13 and TGFβ in M2-differentiated macrophages and ILC2, thereby stimulating myofibroblasts and eliciting the epithelial–to–mesenchymal transition of type 2 pneumocytes. Molecules inside brackets are part of self-amplifying proinflammatory loops fed by IL-33 and outside brackets indicate different factors possibly induced by IL-33. Question mark indicates the uncertainty of whether mast cells produce IL-33. bFGF=fibroblast growth factor. CCL=C-C motif chemokine ligand. CTGF=connective tissue growth factor. CXCL=C-X-C motif chemokine ligand. DIC=(systemic vascular thromboses mimicking) diffuse intravascular coagulation. EMT=epithelial-mesenchymal transition. Foxp=forkhead box protein. GATA=GATA-binding factor. G-CSF=granulocyte colony-stimulating factor. GM-CSF=granulocyte-macrophage colony-stimulating factor. ICU=intensive care unit. IFN=interferon. IL=interleukin. ILC2=type 2 innate lymphoid cell. MAS=macrophage activation syndrome. MOF=multiple organ failure. NET=neutrophil extracellular trap. PDGF=platelet-derived growth factor. P/F ratio=arterial oxygen partial pressure to fractional inspired oxygen ratio. sST2=soluble ST2. ST2=ST2 receptor. TGF=transforming growth factor. TF-1=tissue factor-1. TNF=tumour necrosis factor. TRAIL=TNF-related apoptosis-inducing ligand. Treg=regulatory T cell.
Figure 3
Figure 3
Inflammatory patterns in COVID-19 at various disease stages Cytokine interplay between IL-33, GM-CSF, IL-1α, and IL-1β, and key cytokines, chemokines, and receptors, the composition of lung inflammatory infiltrates, cell phenotypes involved, and possible therapeutic options according to different stages of disease. CCR=C-C motif chemokine receptor. CCL=C-C motif chemokine ligand. CXCL=C-X-C motif chemokine. CXCR=C-X-C motif chemokine receptor. FABP=fatty acid-binding protein. FCN=ficolin. FGF=fibroblast growth factors. GATA=GATA-binding factor. GM-CSF=granulocyte-macrophage colony-stimulating factor. i=inhibitor. IFN=interferon. IL=interleukin. ILC2=type 2 innate lymphoid cell. JAK=Janus kinase. NLRP=NACHT, LRR, and PYD domains-containing protein. PDGF=platelet-derived growth factor. PDGF-Ri=platelet-derived growth factor receptor inhibitor. rIL=recombinant interleukin. SPP=secreted phosphoprotein. sST2= soluble ST2. ST2=ST2 receptor. TGF=transforming growth factor. Th=T-helper. TLR=toll-like receptor. Treg=regulatory T cell. VEGF=vascular endothelial growth factor.

References

    1. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. - PMC - PubMed
    1. McGonagle D, Sharif K, O'Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19 - PMC - PubMed
    1. Behrens EM, Canna SW, Slade K. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J Clin Invest. 2011;121:2264–2277. - PMC - PubMed
    1. Xu Z, Shi L, Wang Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–422. - PMC - PubMed
    1. Zhou Y, Fu B, Zheng X. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020;7:998–1002. - PMC - PubMed

LinkOut - more resources