Stereo Imaging Using Hardwired Self-Organizing Object Segmentation
- PMID: 33076377
- PMCID: PMC7602547
- DOI: 10.3390/s20205833
Stereo Imaging Using Hardwired Self-Organizing Object Segmentation
Abstract
Stereo vision utilizes two cameras to acquire two respective images, and then determines the depth map by calculating the disparity between two images. In general, object segmentation and stereo matching are some of the important technologies that are often used in establishing stereo vision systems. In this study, we implement a highly efficient self-organizing map (SOM) neural network hardware accelerator as unsupervised color segmentation for real-time stereo imaging. The stereo imaging system is established by pipelined, hierarchical architecture, which includes an SOM neural network module, a connected component labeling module, and a sum-of-absolute-difference-based stereo matching module. The experiment is conducted on a hardware resources-constrained embedded system. The performance of stereo imaging system is able to achieve 13.8 frames per second of 640 × 480 resolution color images.
Keywords: SOM; object segmentation; stereo vision.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



















Similar articles
-
SAD-based stereo vision machine on a System-on-Programmable-Chip (SoPC).Sensors (Basel). 2013 Mar 4;13(3):3014-27. doi: 10.3390/s130303014. Sensors (Basel). 2013. PMID: 23459385 Free PMC article.
-
Real-Time FPGA Accelerated Stereo Matching for Temporal Statistical Pattern Projector Systems.Sensors (Basel). 2021 Sep 26;21(19):6435. doi: 10.3390/s21196435. Sensors (Basel). 2021. PMID: 34640755 Free PMC article.
-
Unsupervised Stereo Matching with Surface Normal Assistance for Indoor Depth Estimation.Sensors (Basel). 2023 Dec 15;23(24):9850. doi: 10.3390/s23249850. Sensors (Basel). 2023. PMID: 38139695 Free PMC article.
-
Joint depth map and color consistency estimation for stereo images with different illuminations and cameras.IEEE Trans Pattern Anal Mach Intell. 2013 May;35(5):1094-106. doi: 10.1109/TPAMI.2012.167. IEEE Trans Pattern Anal Mach Intell. 2013. PMID: 22868654
-
Neuromorphic Stereo Vision: A Survey of Bio-Inspired Sensors and Algorithms.Front Neurorobot. 2019 May 28;13:28. doi: 10.3389/fnbot.2019.00028. eCollection 2019. Front Neurorobot. 2019. PMID: 31191287 Free PMC article. Review.
References
-
- Sahoo P.K., Soltani S., Wong A.K., Chan Y.C. A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 1988;4:233–260. doi: 10.1016/0734-189X(88)90022-9. - DOI
-
- Wesolkowski S. Master’s thesis. Systems Design Engineering, University of Waterloo; Waterloo, ON, Canada: 1999. Color image edge detection and segmentation: A comparison of the vector angle and the Euclidean distance color similarity measures.
-
- Li Z., Yang J., Liu G., Cheng Y., Liu C. Unsupervised range-constrained thresholding. Pattern Recognit. Lett. 2011;32:392–402. doi: 10.1016/j.patrec.2010.09.020. - DOI
-
- Hu M., Li M., Wang R.G. Application of an improved Otsu algorithm in image segmentation. J. Electron. Meas Instrum. 2010;24:443–449. doi: 10.3724/SP.J.1187.2010.00443. - DOI
-
- Long J.W., Shen X.J., Chen H.P. Adaptive minimum error threshold algorithm. Acta Autom. Sin. 2012;38:1134–1144. doi: 10.3724/SP.J.1004.2012.01134. - DOI
LinkOut - more resources
Full Text Sources