Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 21;59(2):421-431.
doi: 10.1515/cclm-2020-1294.

Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests

Affiliations
Free article

Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests

Federico Cabitza et al. Clin Chem Lab Med. .
Free article

Abstract

Objectives: The rRT-PCR test, the current gold standard for the detection of coronavirus disease (COVID-19), presents with known shortcomings, such as long turnaround time, potential shortage of reagents, false-negative rates around 15-20%, and expensive equipment. The hematochemical values of routine blood exams could represent a faster and less expensive alternative.

Methods: Three different training data set of hematochemical values from 1,624 patients (52% COVID-19 positive), admitted at San Raphael Hospital (OSR) from February to May 2020, were used for developing machine learning (ML) models: the complete OSR dataset (72 features: complete blood count (CBC), biochemical, coagulation, hemogasanalysis and CO-Oxymetry values, age, sex and specific symptoms at triage) and two sub-datasets (COVID-specific and CBC dataset, 32 and 21 features respectively). 58 cases (50% COVID-19 positive) from another hospital, and 54 negative patients collected in 2018 at OSR, were used for internal-external and external validation.

Results: We developed five ML models: for the complete OSR dataset, the area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.83 to 0.90; for the COVID-specific dataset from 0.83 to 0.87; and for the CBC dataset from 0.74 to 0.86. The validations also achieved good results: respectively, AUC from 0.75 to 0.78; and specificity from 0.92 to 0.96.

Conclusions: ML can be applied to blood tests as both an adjunct and alternative method to rRT-PCR for the fast and cost-effective identification of COVID-19-positive patients. This is especially useful in developing countries, or in countries facing an increase in contagions.

Keywords: COVID-19; SARS-CoV-2; blood laboratory tests; complete blood count; gradient boosted decision tree; machine learning.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Oran, DP, Topol, EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med. https://doi.org/10.7326/M20-3012. [Published online June 3, 2020].
    1. Vogels, CBF, Brito, AF, Wyllie, AL, Fauver, JR, Ott, IM, Kalinich, CC, et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat Microbiol. https://doi.org/10.1038/s41564-020-0761-6. [Published online July 10, 2020].
    1. Lippi, G, Simundic, A-M, Plebani, M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med 2020;58:1070–6. https://doi.org/10.1515/cclm-2020-0285.
    1. Woloshin, S, Patel, N, Kesselheim, AS. False negative tests for SARS-CoV-2 infection — challenges and implications. N Engl J Med 2020;383:e38. https://doi.org/10.1056/NEJMp2015897.
    1. Wynants, L, Van Calster, B, Collins, GS, Riley, RD, Heinze, G, Schuit, E, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. BMJ 2020;369:m1328. https://doi.org/10.1136/bmj.m1328.