Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 1;55(6):796-805.
doi: 10.1097/SHK.0000000000001683.

Hyper-Activation of Endogenous GLP-1 System to Gram-negative Sepsis Is Associated With Early Innate Immune Response and Modulated by Diabetes

Affiliations

Hyper-Activation of Endogenous GLP-1 System to Gram-negative Sepsis Is Associated With Early Innate Immune Response and Modulated by Diabetes

Olga Bloch et al. Shock. .

Abstract

Background: Culture-positive gram-negative sepsis induces greater magnitude of early innate immunity /inflammatory response compared with culture-negative sepsis. We previously demonstrated increased activation of anti-inflammatory Glucagon Like Peptide-1 (GLP-1) hormone in initial phase of sepsis more pronounced in diabetes patients. However, whether GLP-1 system is hyperactivated during the early innate immune response to gram-negative sepsis and modulated by diabetes remains unknown.

Objectives: Total and active GLP-1, soluble Dipeptidyl peptidase 4 (sDPP-4) enzyme, and innate immunity markers presepsin (sCD14) and procalcitonin (PCT) in plasma were determined by ELISA on admission and after 2 to 4 days in 37 adult patients with and without type 2 diabetes and gram-negative or culture-negative sepsis of different severity.

Results: Severe but not non-severe sepsis was associated with markedly increased GLP-1 system response, which correlated with PCT and the organ dysfunction marker lactate. Culture-positive gram-negative bacteria but not culture-negative sepsis induced hyper-activation of GLP-1 system, which correlated with increased innate immune markers sCD14, PCT, and lactate. GLP-1 inhibitory enzyme sDPP-4 was down regulated by sepsis and correlated negatively with sCD14 in gram-negative sepsis. Diabetic patients demonstrated increased GLP-1 response but significantly weaker innate immune response to severe and gram-negative sepsis.

Conclusions: Early stage of gram-negative sepsis is characterized by endogenous GLP-1 system hyperactivity associated with over activation of innate immune response and organ dysfunction, which are modulated by diabetes. Total GLP-1 may be novel marker for rapid diagnosis of gram-negative sepsis and its severity.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest.

References

    1. Mira JC, Gentile LF, Mathias BJ, Efron PA, Brakenridge SC, Mohr AM, Moore FA, Moldawer LL. Sepsis pathophysiology, chronic critical illness and PICS. Crit Care Med 45:253–262, 2017.
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801–810, 2016.
    1. Abe R, Oda S, Sadahiro T, Nakamura M, Hirayama Y, Tateishi Y, Shinozaki K, Hirasawa H. Gram-negative bacteremia induces greater magnitude of inflammatory response than Gram-positive bacteremia. Crit Care 14:R27, 2010.
    1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 17:1546–1554, 2003.
    1. Phua J, Ngerng WJ, See KC, Tay CK, Kiong T, Lim HF, Chew MY, Yip HS, Tan A, Khalizah HJ, et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit Care 17:R202, 2013.

Publication types

Substances