Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 20;20(1):273.
doi: 10.1186/s12890-020-01281-w.

LncRNA SNHG10 is downregulated in non-small cell lung cancer and predicts poor survival

Affiliations

LncRNA SNHG10 is downregulated in non-small cell lung cancer and predicts poor survival

Meng Liang et al. BMC Pulm Med. .

Abstract

Background: LncRNA SNHG10 has been reported to be an oncogenic lncRNA in liver cancer. However, its roles in non-small cell lung cancer (NSCLC) remains unknown.

Methods: Tumor and paired non-tumor tissues were harvested from 62 NSCLC patients. RT-qPCR was used to detect the expression of SNHG10 and miR-21 in tissues. Overexpression experiments were used to evaluate the interaction between SNHG10 and miR-21 in NSCLC cells. CCK-8 assay was used to detect the cell proliferation.

Results: We observed the expression of SNHG10 was down-regulated in non-small cell lung cancer (NSCLC) compared with that in non-tumor tissues. Moreover, we found that high expression levels of SNHG10 predicted favorable survival of NSCLC patients, and the expression of miR-21 were increased in NSCLC and inversely correlated with SNHG10 expression. In NSCLC cells, overexpression of SNHG10 resulted in increased miR-21 gene methylation and decreased miR-21 expression. Moreover, overexpression of SNHG10 attenuated the enhancing effect of miR-21 overexpression on cell proliferation.

Conclusions: SNHG10 may involve in NSCLC cell proliferation by regulating the miR-21 gene methylation.

Keywords: Methylation; NSCLC; SNHG10; miR-21.

PubMed Disclaimer

Conflict of interest statement

The authors declare that there is no conflict of interests.

Figures

Fig. 1
Fig. 1
Downregulation of SNHG10 is correlated with the poor survival of NSCLC patients. Expression of SNHG10 in paired tissues was determined by RT-qPCR. Levels of SNHG10 expression were compared between NSCLC and non-tumor tissues. Mean values were compared (a). ***, p < 0.001. To analyze survival, the 62 patients were divided into high and low SNHG10 level groups (n = 31, with median expression level of SNHG10 in NSCLC tissues as cutoff value). Survival curves were plotted and compared by log-rank test (b)
Fig. 2
Fig. 2
MiR-21 was upregulated in NSCLC and inversely correlated with SNHG10. Expression of miR-21 in paired NSCLC and non-tumor tissues from the 62 patients was determined by RT-qPCR. Levels of miR-21 expression were compared between NSCLC and non-tumor tissues. Mean values were compared (a). ***, p < 0.001. Linear regression was performed to analyze the correlations between SNHG10 and miR-21 across NSCLC tissues (b) and non-tumor tissues (c)
Fig. 3
Fig. 3
SNHG10 downregulated miR-21 in NSCLC cell through methylation. SNHG10 expression vector or miR-21 mimic was transfected into KLN 205 and HCC827 cells. Transfections were confirmed by RT-qPCR (a). The effects of SNHG10 overexpression on miR-21 (b), and the effects of miR-21 overexpression on SNHG10 (c) were also analyzed by RT-qPCR. MSP was performed to analyze the effects of SNHG10 overexpression on miR-21 (d). Mean ± SD values were presented and compared. M, methylation; U, un-methylation; *, p < 0.05.
Fig. 4
Fig. 4
SNHG10 overexpression attenuated the enhancing effect of miR-21 overexpression on cell proliferation. The roles of SNHG10 and miR-21 in regulating the proliferation of KLN 205 and HCC827 cells were analyzed by CCK-8. Mean ± SD values were presented and compared. *, p < 0.05

Similar articles

Cited by

References

    1. Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288–300. doi: 10.21037/tlcr.2016.06.07. - DOI - PMC - PubMed
    1. Rakaee M, Busund LT, Paulsen EE, et al. Prognostic effect of intratumoral neutrophils across histological subtypes of non-small cell lung cancer. Oncotarget. 2016;7(44):72184–72196. doi: 10.18632/oncotarget.12360. - DOI - PMC - PubMed
    1. Aguiar PN, Jr, De Mello RA, Hall P, et al. PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy. 2017;9(6):499–506. doi: 10.2217/imt-2016-0150. - DOI - PubMed
    1. O’Keeffe LM, Taylor G, Huxley RR, et al. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open. 2018;8(10):e021611. doi: 10.1136/bmjopen-2018-021611. - DOI - PMC - PubMed
    1. Hung RJ, Spitz MR, Houlston RS, et al. Lung Cancer risk in never-smokers of European descent is associated with genetic variation in the 5p15. 33 TERT-CLPTM1Ll region. J Thorac Oncol. 2019;14(8):1360–1369. doi: 10.1016/j.jtho.2019.04.008. - DOI - PMC - PubMed