Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 20;21(1):275.
doi: 10.1186/s12931-020-01545-3.

Automated computed tomography quantification of fibrosis predicts prognosis in combined pulmonary fibrosis and emphysema in a real-world setting: a single-centre, retrospective study

Affiliations

Automated computed tomography quantification of fibrosis predicts prognosis in combined pulmonary fibrosis and emphysema in a real-world setting: a single-centre, retrospective study

Masahiro Nemoto et al. Respir Res. .

Abstract

Background: Combined pulmonary fibrosis and emphysema (CPFE) is a heterogeneous clinico-radiological syndrome without a consensus definition. There are limited data on the relation between the amount of parenchymal fibrosis and prognosis. In this study, we assessed the prognostic implications of the extent of fibrosis assessed by an automated quantitative computed tomography (CT) technique and the radiological and functional change over time in patients with a broad spectrum of fibrotic interstitial lung diseases (ILDs) encountered in a real-world setting.

Methods: We conducted a single-centre, retrospective study of 228 consecutive patients with CPFE, encountered from 2007 to 2015 at Kameda Medical Center, Chiba, Japan. We investigated the prognostic value of automated CT fibrosis quantification and the subsequent course of CPFE.

Results: Among 228 patients with CPFE, 89 had fibrosis affecting < 5% of their lungs, 54 had 5 to < 10% fibrosis, and 85 had ≥ 10% fibrosis at the time of diagnosis. Lower volume of fibrosis correlated with lower rates of mortality and acute exacerbation (p < 0.001). In particular, among those with < 5% fibrosis, only 4.5% died and none experienced acute exacerbation during follow-up, whereas 57.6% and 29.4% of those with ≥ 10% fibrosis experienced death and acute exacerbation, respectively. Although, the ≥ 10% fibrosis group had the poorest overall survival as well as the highest incidence of acute exacerbation, the incidence of decline in pulmonary function tests, change per year in total lung volume, and progression of fibrosis on chest CT was highest in the 5 to < 10% fibrosis group. The Cox proportional hazard model for CPFE progression (defined by composite criteria of death, acute exacerbation, and decline in forced vital capacity or diffusing capacity) showed fibrosis proportion was a risk factor independent of age, sex, smoking pack-years, the Charlson Comorbidity Index, lung cancer, connective tissue disease, and idiopathic pulmonary fibrosis.

Conclusions: Less severe (< 5%) fibrosis at baseline was associated with disease stability and better prognosis compared to more severe fibrosis in CPFE occurring with fibrotic ILDs. Further studies including a validation cohort will be needed. Trial Registration Retrospectively registered.

Keywords: Cohort studies; Fibrosis; Lung; Pulmonary emphysema; Tomography.

PubMed Disclaimer

Conflict of interest statement

Dr. Bartholmai reports royalties from Imbio, LLC, during the conduct of the study. The CALIPER software is licensed to Imbio, LLC and sold as Imbio Lung Texture Analysis (LTA). Royalties are due to Mayo Clinic and Dr. Bartholmai and were paid during this study, but no fees were given to the authors or to Mayo Clinic directly related to the content of the manuscript. Dr. Bartholmai also received personal fees from Promedior, LLC, grants from NIH/NHLBI, personal fees from Imbio, LLC, and Mayo Clinic received fees from Boehringer Ingelheim, outside the submitted work in the last 3 years. In addition, Dr. Bartholmai has a patent systems and methods for analyzing in vivo tissue volumes using medical imaging pending.

Figures

Fig. 1
Fig. 1
Patient selection flow chart
Fig. 2
Fig. 2
Representative high-resolution computed tomography images from three patients. Images of the upper lung (a1, b1, and c1) and lower lung (a2, b2, and c2) and 3D renderings analysed by computer-aided lung informatics for lung informatics pathology evaluation and rating shown on each right side (a3, 4; b3, 4; and c3, 4)
Fig. 3
Fig. 3
Ternary plot for the extent of fibrosis, emphysema, and normal lung; a death vs non-death, b progression vs non-progression
Fig. 4
Fig. 4
Kaplan–Meier curve for a overall survival and b progression-free survival. Line: patients with < 5% fibrosis. Dash: patients with 5 to < 10% fibrosis. Dot: patients with ≥ 10% fibrosis

Similar articles

Cited by

References

    1. Jankowich MD, Rounds SIS. Combined pulmonary fibrosis and emphysema syndrome: a review. Chest. 2012;141:222–231. doi: 10.1378/chest.11-1062. - DOI - PMC - PubMed
    1. Kumar A, Cherian SV, Vassallo R, Yi ES, Ryu JH. Current concepts in pathogenesis, diagnosis, and management of smoking-related interstitial lung diseases. Chest. 2018;154:394–408. doi: 10.1016/j.chest.2017.11.023. - DOI - PubMed
    1. Jiang CG, Fu Q, Zheng CM. Prognosis of combined pulmonary fibrosis and emphysema: comparison with idiopathic pulmonary fibrosis alone. Ther Adv Respir Dis. 2019;13:1753466619888119. doi: 10.1177/1753466619888119. - DOI - PMC - PubMed
    1. Wiggins J, Strickland B, Turner-Warwick M. Combined cryptogenic fibrosing alveolitis and emphysema: the value of high resolution computed tomography in assessment. Respir Med. 1990;84:365–369. doi: 10.1016/S0954-6111(08)80070-4. - DOI - PubMed
    1. Cottin V, Nunes H, Brillet PY, Delaval P, Devouassoux G, Tillie-Leblond I, et al. Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur Respir J. 2005;26:586–593. doi: 10.1183/09031936.05.00021005. - DOI - PubMed

Publication types