Incoherent excess noise spectrally encodes broadband light sources
- PMID: 33082941
- PMCID: PMC7538909
- DOI: 10.1038/s41377-020-00404-6
Incoherent excess noise spectrally encodes broadband light sources
Abstract
Across optics and photonics, excess intensity noise is often considered a liability. Here, we show that excess noise in broadband supercontinuum and superluminescent diode light sources encodes each spectral channel with unique intensity fluctuations, which actually serve a useful purpose. Specifically, we report that excess noise correlations can both characterize the spectral resolution of spectrometers and enable cross-calibration of their wavelengths across a broad bandwidth. Relative to previous methods that use broadband interferometry and narrow linewidth lasers to characterize and calibrate spectrometers, our approach is simple, comprehensive, and rapid enough to be deployed during spectrometer alignment. First, we employ this approach to aid alignment and reduce the depth-dependent degradation of the sensitivity and axial resolution in a spectrometer-based optical coherence tomography (OCT) system, revealing a new outer retinal band. Second, we achieve a pixel-to-pixel correspondence between two otherwise disparate spectrometers, enabling a robust comparison of their respective measurements. Thus, excess intensity noise has useful applications in optics and photonics.
Keywords: Biophotonics; Imaging and sensing; Optical spectroscopy.
© The Author(s) 2020.
Conflict of interest statement
Conflict of interestV.J.S. receives royalties from Optovue, Inc. The remaining authors declare that they have no conflict of interest.
Figures





Similar articles
-
Incoherent broadband cavity enhanced absorption spectroscopy using supercontinuum and superluminescent diode sources.Opt Express. 2015 Sep 21;23(19):25225-34. doi: 10.1364/OE.23.025225. Opt Express. 2015. PMID: 26406720
-
Noise characterization of supercontinuum sources for low-coherence interferometry applications.J Opt Soc Am A Opt Image Sci Vis. 2014 Dec 1;31(12):2703-10. doi: 10.1364/JOSAA.31.002703. J Opt Soc Am A Opt Image Sci Vis. 2014. PMID: 25606759 Free PMC article.
-
High-Speed Balanced-Detection Visible-Light Optical Coherence Tomography in the Human Retina Using Subpixel Spectrometer Calibration.IEEE Trans Med Imaging. 2022 Jul;41(7):1724-1734. doi: 10.1109/TMI.2022.3147497. Epub 2022 Jun 30. IEEE Trans Med Imaging. 2022. PMID: 35089857 Free PMC article.
-
State-of-the-art retinal optical coherence tomography.Prog Retin Eye Res. 2008 Jan;27(1):45-88. doi: 10.1016/j.preteyeres.2007.07.005. Epub 2007 Aug 11. Prog Retin Eye Res. 2008. PMID: 18036865 Review.
-
The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.Ophthalmic Physiol Opt. 2016 May;36(3):218-39. doi: 10.1111/opo.12289. Ophthalmic Physiol Opt. 2016. PMID: 27112222 Free PMC article. Review.
Cited by
-
Numerical calibration method for a multiple spectrometer-based OCT system.Biomed Opt Express. 2022 Feb 24;13(3):1685-1701. doi: 10.1364/BOE.450942. eCollection 2022 Mar 1. Biomed Opt Express. 2022. PMID: 35414988 Free PMC article.
-
Balanced-detection visible optical coherence tomography with a low-noise supercontinuum laser.Biomed Opt Express. 2025 Jun 23;16(7):2898-2913. doi: 10.1364/BOE.562672. eCollection 2025 Jul 1. Biomed Opt Express. 2025. PMID: 40677808 Free PMC article.
-
Light-evoked deformations in rod photoreceptors, pigment epithelium and subretinal space revealed by prolonged and multilayered optoretinography.Nat Commun. 2024 Jun 19;15(1):5156. doi: 10.1038/s41467-024-49014-5. Nat Commun. 2024. PMID: 38898002 Free PMC article.
-
In vivo Morphometry of Inner Plexiform Layer (IPL) Stratification in the Human Retina With Visible Light Optical Coherence Tomography.Front Cell Neurosci. 2021 Apr 29;15:655096. doi: 10.3389/fncel.2021.655096. eCollection 2021. Front Cell Neurosci. 2021. PMID: 33994948 Free PMC article.
-
From Soma to Synapse: Imaging Age-Related Rod Photoreceptor Changes in the Mouse with Visible Light OCT.Ophthalmol Sci. 2023 Apr 29;3(4):100321. doi: 10.1016/j.xops.2023.100321. eCollection 2023 Dec. Ophthalmol Sci. 2023. PMID: 37388138 Free PMC article.
References
-
- Fercher AF, et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 1995;117:43–48. doi: 10.1016/0030-4018(95)00119-S. - DOI
-
- Long DA. Raman Spectroscopy. New York: McGraw-Hill; 1977.
-
- Reeves JB., III Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma. 2010;158:3–14. doi: 10.1016/j.geoderma.2009.04.005. - DOI
-
- Bol’Shakov AA, et al. Laser-induced breakdown spectroscopy in industrial and security applications. Appl. Opt. 2010;49:C132–C142. doi: 10.1364/AO.49.00C132. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources