Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1987 Oct;1(4):272-81.
doi: 10.1096/fasebj.1.4.3308611.

The glomerular mesangial cell: an expanding role for a specialized pericyte

Affiliations
Review

The glomerular mesangial cell: an expanding role for a specialized pericyte

D Schlondorff. FASEB J. 1987 Oct.

Abstract

The mesangial cell occupies a central position in the renal glomerulus. It has characteristics of a modified smooth muscle cell, but is also capable of a number of other functions. Among these are generation of prostaglandins (PGs) and mediators of inflammation; production and breakdown of basement membrane and other biomatrix material; synthesis of cytokines; and uptake of macromolecules, including immune complexes. In terms of its smooth muscle activity, the mesangial cell contracts or relaxes in response to a number of vasoactive agents. This ability allows the cells to modify glomerular filtration locally. The cellular mechanism of action of many agents influencing mesangial cells involves activation of phospholipase C for phosphatidylinositol 4,5-bisphosphate. This results in generation of inositol trisphosphate and release of intracellular calcium. Mesangial cell relaxation can be mediated by enhanced cAMP or cGMP generation. Many vasoactive substances also stimulate PG production by mesangial cells. This involves activation of both phospholipase C and A2, the latter being responsible for the release of arachidonic acid. Mesangial cells are also capable of endocytosis of macromolecules, including immune complexes. This is initiated by binding to a specific receptor, resulting in formation of PG, platelet-activating factor, and reactive oxygen species. Mesangial cells can generate interleukin 1 and platelet-derived growth factor and respond to these in an autocrine manner. Thus, the mesangial cell not only can control glomerular filtration, but may also be involved in the response to local injury, including cell proliferation and basement membrane remodeling.

PubMed Disclaimer

LinkOut - more resources