Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct 19;13(10):319.
doi: 10.3390/ph13100319.

Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine

Affiliations
Review

Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine

Eugenia Romano et al. Pharmaceuticals (Basel). .

Abstract

Exosomes are phospholipid-based particles endogenously produced by both normal and tumor cells. Initially identified as a pathway for shuttling cellular waste, for a long time they were thought to act as "garbage bags", and only in the past few years have they emerged as a promising drug delivery system. In this review, we provide an overview of the knowledge about exosome architecture and biogenesis and the recent progress in isolation methods. Furthermore, we describe the mechanisms involved in both extra- and intracellular communication with a focus on glioma brain tumors. Glioma is considered a rare disease and is the most prominent aggressive brain malignancy. How exosomes target glial tumoral cells in vivo remains largely unknown. However, they are able to influence numerous physio-pathological aspects. Here, we discuss the role they play in this heterogeneous and complex microenvironment and their potential applications.

Keywords: biomarkers; brain diseases; extracellular vesicles; glioma; intercellular communication; miRNA; therapeutics; tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

The author declare no conflict of interest in this work.

Figures

Figure 1
Figure 1
Biogenesis and secretion of exosomes. After the endocytosis of the plasma membrane, the transmembrane proteins are sorted into the vesicles that bud from the cellular membrane into “early endosomes” (I). The biogenesis of the exosome begins with the progressive formation and accumulation of ILVs inside MVBs (II). This process is mediated via an ESCRT-dependent (II*) and/or independent (II**) pathway. Then, the MVBs may follow a degradation pathway fusing with lysosomes or are destined to release the ILVs as exosomes to the extracellular space by exocytosis (III).

References

    1. Dörsam B., Reiners K.S., von Strandmann E.P. Cancer-derived extracellular vesicles: Friend and foe of tumour immunosurveillance. Philos. Trans. R. Soc. B Biol. Sci. 2017;373:20160481. doi: 10.1098/rstb.2016.0481. - DOI - PMC - PubMed
    1. Keller S., Ridinger J., Rupp A.K., Janssen J.W.G., Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 2011;9:86. doi: 10.1186/1479-5876-9-86. - DOI - PMC - PubMed
    1. Caby M.P., Lankar D., Vincendeau-Scherrer C., Raposo G., Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 2005;17:879–887. doi: 10.1093/intimm/dxh267. - DOI - PubMed
    1. Kalra H., Adda C.G., Liem M., Ang C.S., Mechler A., Simpson R.J., Hulett M.D., Mathivanan S. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013;13:3354–3364. doi: 10.1002/pmic.201300282. - DOI - PubMed
    1. Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138. - DOI - PMC - PubMed

LinkOut - more resources