Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct 19;17(20):7618.
doi: 10.3390/ijerph17207618.

The Gut Microbiota and Inflammation: An Overview

Affiliations
Review

The Gut Microbiota and Inflammation: An Overview

Zahraa Al Bander et al. Int J Environ Res Public Health. .

Abstract

The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field. Based on the current literature, it appears that as the gut microbiota composition differs between individuals and is contingent on a variety of factors like diet and genetics, some individuals may possess bacteria associated with pro-inflammatory effects whilst others may harbour those with anti-inflammatory effects. Recent technological advancements have allowed for better methods of characterising the gut microbiota. Further research to continually improve our understanding of the inflammatory pathways that interact with bacteria may elucidate reasons behind varying presentations of the same disease and varied responses to the same treatment in different individuals. Furthermore, it can inform clinical practice as anti-inflammatory microbes can be employed in probiotic therapies or used to identify suitable prebiotic therapies.

Keywords: cytokines; gut microbiota; inflammation; microbiome.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The taxonomic classification system and the classification of humans and Lactobacillus delbrueckii as an example [8]. Organisms are classified by this hierarchical system, where the most general and inclusive group is at the domain level. Organisms within the same species are most genetically similar.
Figure 2
Figure 2
Steps generally undertaken in stool microbiome analysis.
Figure 3
Figure 3
Interrelationships between the gut microbiota, inflammation and inflammatory conditions. The gut microbiota is shaped by various factors and has a bidirectional relationship with diet and BMI. It also has a bidirectional relationship with inflammation and depending on its composition, it can inhibit or stimulate inflammatory pathways. These, in turn, can promote the onset of various inflammatory conditions.

References

    1. Jack A.G., Martin J.B., Caporaso J.G., Janet K.J., Susan V.L., Rob K. Current understanding of the human microbiome. Nat. Med. 2018;24:392. doi: 10.1038/nm.4517. - DOI - PMC - PubMed
    1. Petrosino J.F. The microbiome in precision medicine: The way forward. Genome Med. 2018;10:12. doi: 10.1186/s13073-018-0525-6. - DOI - PMC - PubMed
    1. Ursell L.K., Metcalf J.L., Parfrey L.W., Knight R. Defining the human microbiome. Nutr. Rev. 2012;70(Suppl. 1):S38–S44. doi: 10.1111/j.1753-4887.2012.00493.x. - DOI - PMC - PubMed
    1. Mobeen F., Sharma V., Tulika P. Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Regions. Bioinformation. 2018;14:560–573. doi: 10.6026/97320630014560. - DOI - PMC - PubMed
    1. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59. doi: 10.1038/nature08821. - DOI - PMC - PubMed

Publication types