Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr;64(4):416-425.
doi: 10.1139/gen-2020-0131. Epub 2020 Oct 22.

Machine learning for precision medicine

Affiliations
Free article
Review

Machine learning for precision medicine

Sarah J MacEachern et al. Genome. 2021 Apr.
Free article

Abstract

Precision medicine is an emerging approach to clinical research and patient care that focuses on understanding and treating disease by integrating multi-modal or multi-omics data from an individual to make patient-tailored decisions. With the large and complex datasets generated using precision medicine diagnostic approaches, novel techniques to process and understand these complex data were needed. At the same time, computer science has progressed rapidly to develop techniques that enable the storage, processing, and analysis of these complex datasets, a feat that traditional statistics and early computing technologies could not accomplish. Machine learning, a branch of artificial intelligence, is a computer science methodology that aims to identify complex patterns in data that can be used to make predictions or classifications on new unseen data or for advanced exploratory data analysis. Machine learning analysis of precision medicine's multi-modal data allows for broad analysis of large datasets and ultimately a greater understanding of human health and disease. This review focuses on machine learning utilization for precision medicine's "big data", in the context of genetics, genomics, and beyond.

Keywords: apprentissage automatique; apprentissage profond; deep learning; machine learning; médecine personnalisée; precision medicine.

PubMed Disclaimer

LinkOut - more resources