Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 1:267:113490.
doi: 10.1016/j.jep.2020.113490. Epub 2020 Oct 19.

Anti-inflammatory action of physalin A by blocking the activation of NF-κB signaling pathway

Affiliations

Anti-inflammatory action of physalin A by blocking the activation of NF-κB signaling pathway

Liying Wang et al. J Ethnopharmacol. .

Abstract

Ethnopharmacological relevance: Physalis Calyx seu Fructus is typically used to treat inflammatory diseases such as upper respiratory tract infection and acute tonsillitis in clinical practice of China. Physalin A, a main active ingredient of this traditional Chinese medicine (TCM), has been reported for its significant anti-tumor activity. However, most reports focused on the studies of its anti-tumor activity, the anti-inflammatory activity of physalin A and its molecular mechanism are still not elucidated clearly.

Aim of the study: The aim of the study was to investigate the anti-inflammatory activities both in vitro and in vivo and molecular mechanism of physalin A.

Materials and methods: The potential anti-inflammatory properties of physalin A were evaluated in vitro by lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells, and in vivo via two typical acute inflammation murine models. Some important inflammation-related molecules were analyzed by enzyme-linked immuno sorbent assay (ELISA) and Western blotting.

Results: The results showed that physalin A inhibited carrageenan-induced paw edema of rats and capillary permeability of mice induced by acetic acid in vivo. Furthermore, physalin A also significantly reduced the release of inflammatory mediators nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) induced by lipopolysaccharide (LPS) in RAW 264.7 in vitro. Further investigations indicated that physalin A can down-regulate the high expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Physalin A remarkably blocked the degradation of inhibitor of nuclear factor kappa B alpha (IκB-α) and the nuclear translocation of nuclear factor-κB (NF-κB) p65 induced by LPS in RAW 264.7 cells. However, physalin A did not significantly inhibit the phosphorylation of mitogen-activated protein kinases (MAPKs) family proteins c-Jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK) or p38.

Conclusions: All the results clearly illustrated that the anti-inflammatory action of physalin A is due to the inactivation of NF-κB signal pathway, but is irrelevant to the MAPKs pathway.

Keywords: Anti-inflammatory activity; MAPKs; NF-κB; NO; Physalin A; iNOS.

PubMed Disclaimer

MeSH terms

LinkOut - more resources