Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul 5;196(1):85-100.
doi: 10.1016/0022-2836(87)90512-2.

Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at a single template base

Affiliations

Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at a single template base

J R Levin et al. J Mol Biol. .

Abstract

We have studied the conditions needed for the formation of stable ternary complexes by Escherichia coli RNA polymerase using a procedure in which elongation by the majority of active enzyme molecules is halted at a specific template base. Stable complexes of this sort, containing RNA chains as short as 15 nucleotides, have been formed from three different promoter sites (T7 A1, lambda PL, and E. coli rrnB P1) using di- and trinucleotides as primers in reactions limited by the presence of only three of the nucleoside triphosphate substrates. The resulting ternary complexes can be stored for at least five days without loss in activity, and provide useful reagents and substrates for studies of the properties of RNA polymerases engaged in chain elongation and termination. At all three promoter sites abortive initiation, leading to synthesis and release of oligomers up to ten nucleotides, competes with productive initiation, leading to the formation of stable elongating complexes. Thus the relative instability of ternary RNA polymerase complexes bearing transcripts shorter than ten nucleotides may be a general feature of the transcription initiation reaction.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources